Added proximity support in search.
[idzebra-moved-to-github.git] / doc / zebra.sgml
1 <!doctype linuxdoc system>
2
3 <!--
4   $Id: zebra.sgml,v 1.32 1996-11-11 13:37:49 adam Exp $
5 -->
6
7 <article>
8 <title>Zebra Server - Administrators's Guide and Reference
9 <author><htmlurl url="http://www.indexdata.dk/" name="Index Data">, <tt><htmlurl url="mailto:info@index.ping.dk" name="info@index.ping.dk"></>
10 <date>$Revision: 1.32 $
11 <abstract>
12 The Zebra information server combines a versatile fielded/free-text
13 search engine with a Z39.50-1995 frontend to provide a powerful and flexible
14 information management system. This document explains the procedure for
15 installing and configuring the system, and outlines the possibilities
16 for managing data and providing Z39.50
17 services with the software.
18 </abstract>
19
20 <toc>
21
22 <sect>Introduction
23
24 <sect1>Overview
25
26 <p>
27 The Zebra system is a fielded free-text indexing and retrieval engine with a
28 Z39.50 frontend. You can use any commercial or freeware Z39.50 client
29 to access data stored in Zebra.
30
31 The Zebra server is our first step towards the development of a fully
32 configurable, open information system. Eventually, it will be paired
33 off with a powerful Z39.50 client to support complex information
34 management tasks within almost any application domain. We're making
35 the server available now because it's no fun to be in the open
36 information retrieval business all by yourself. We want to allow
37 people with interesting data to make their things
38 available in interesting ways, without having to start out
39 by implementing yet another protocol stack from scratch.
40
41 This document is an introduction to the Zebra system. It will tell you
42 how to compile the software, and how to prepare your first database.
43 It also explains how the server can be configured to give you the
44 functionality that you need.
45
46 If you find the software interesting, you should join the support
47 mailing-list by sending Email to <tt/zebra-request@index.ping.dk/.
48
49 <sect1>Features
50
51 <p>
52 This is a list of some of the most important features of the
53 system.
54
55 <itemize>
56
57 <item>
58 Supports updating - records can be added and deleted without
59 rebuilding the index from scratch.
60 The update procedure is tolerant to crashes or hard interrupts
61 during register updating - registers can be reconstructed following a crash.
62 Registers can be safely updated even while users are accessing the server.
63
64 <item>
65 Supports large databases - files for indices, etc. can be
66 automatically partitioned over multiple disks.
67
68 <item>
69 Supports arbitrarily complex records - base input format is an
70 SGML-like syntax which allows nested (structured) data elements, as
71 well as variant forms of data.
72
73 <item>
74 Supports random storage formats. A system of input filters driven by
75 regular expressions allows you to easily process most ASCII-based
76 data formats.
77
78 <item>
79 Supports boolean queries as well as relevance-ranking (free-text)
80 searching. Right truncation and masking in terms are supported, as
81 well as full regular expressions.
82
83 <item>
84 Supports multiple concrete syntaxes
85 for record exchange (depending on the configuration): GRS-1, SUTRS,
86 ISO2709 (*MARC). Records can be mapped between record syntaxes and
87 schema on the fly.
88
89 <item>
90 Supports approximate matching in registers (ie. spelling mistakes,
91 etc).
92
93 <item>
94 Protocol support:
95
96 <itemize>
97
98 <item>
99 Protocol facilities: Init, Search, Retrieve, Browse.
100
101 <item>
102 Piggy-backed presents are honored in the search-request.
103
104 <item>
105 Named result sets are supported.
106
107 <item>
108 Easily configured to support different application profiles, with
109 tables for attribute sets, tag sets, and abstract syntaxes.
110 Additional tables control facilities such as element mappings to
111 different schema (eg., GILS-to-USMARC).
112
113 <item>
114 Complex composition specifications using Espec-1 are partially
115 supported (simple element requests only).
116
117 <item>
118 Element Set Names are defined using the Espec-1 capability of the
119 system, and are given in configuration files as simple element
120 requests (and possibly variant requests).
121
122 <item>
123 Some variant support (not fully implemented yet).
124
125 <item>
126 Using the YAZ toolkit for the protocol implementation, the
127 server can utilise a plug-in XTI/mOSI implementation (not included) to
128 provide SR services over an OSI stack, as well as Z39.50 over TCP/IP.
129
130 </itemize>
131
132 </itemize>
133
134 <sect1>Future Work
135
136 <p>
137 This is an alfa-release of the software, to allow you to look at
138 it - try it out, and assess whether it can be of use to you. We expect
139 this version to be followed by a succession of beta-releases until we
140 arrive at a stable first version.
141
142 These are some of the plans that we have for the software in the near
143 and far future, approximately ordered after their relative importance.
144 Items marked with an
145 asterisk will be implemented before the
146 last beta release.
147
148 <itemize>
149
150 <item>
151 *Complete the support for variants. Finalize support for the WAIS
152 retrieval methodology.
153
154 <item>
155 *Finalize the data element <it/include/ facility to support multimedia
156 data elements in records.
157
158 <item>
159 *Port the system to Windows NT.
160
161 <item>
162 Add more sophisticated relevance ranking mechanisms. Add support for soundex
163 and stemming. Add relevance <it/feedback/ support.
164
165 <item>
166 Add Explain support.
167
168 <item>
169 Add support for very large records by implementing segmentation and/or
170 variant pieces.
171
172 <item>
173 Support the Item Update extended service of the protocol.
174
175 <item>
176 We want to add a management system that allows you to
177 control your databases and configuration tables from a graphical
178 interface. We'll probably use Tcl/Tk to stay platform-independent.
179
180 </itemize>
181
182 Programmers thrive on user feedback. If you are interested in a facility that
183 you don't see mentioned here, or if there's something you think we
184 could do better, please drop us a mail. If you think it's all really
185 neat, you're welcome to drop us a line saying that, too. You'll find
186 contact info at the end of this file.
187
188 <sect>Compiling the software
189
190 <p>
191 An ANSI C compiler is required to compile the Zebra
192 server system &mdash; <tt/gcc/ works fine if your own system doesn't
193 provide an adequate compiler.
194
195 Unpack the distribution archive. In some cases, you may want to edit
196 the top-level <tt/Makefile/, eg. to select a different C compiler, or
197 to specify machine-specific libraries in the <bf/NETLIB/ variable.
198
199 When you are done editing the <tt>Makefile</tt> type:
200 <tscreen><verb>
201 $ make
202 </verb></tscreen>
203
204 If successful, two executables have been created in the sub-directory
205 <tt/index/.
206 <descrip>
207 <tag><tt>zebrasrv</tt></tag> The Z39.50 server and search engine.
208 <tag><tt>zebraidx</tt></tag> The administrative tool for the search index.
209 </descrip>
210
211 <sect>Quick Start 
212 <p>
213 In this section, we will test the system by indexing a small set of sample
214 GILS records that are included with the software distribution. Go to the
215 <tt>test</tt> subdirectory of the distribution archive. There you will
216 find a configuration
217 file named <tt>zebra.cfg</tt> with the following contents:
218 <tscreen><verb>
219 # Where are the YAZ tables located.
220 profilePath: ../../yaz/tab ../tab
221
222 # Files that describe the attribute sets supported.
223 attset: bib1.att
224 attset: gils.att
225
226 # Name of character map file.
227 charMap: scan.chr
228 </verb></tscreen>
229
230 Now, edit the file and set <tt>profilePath</tt> to the path of the
231 YAZ profile tables (sub directory <tt>tab</tt> of the YAZ distribution
232 archive).
233
234 The 48 test records are located in the sub directory <tt>records</tt>.
235 To index these, type:
236 <tscreen><verb>
237 $ ../index/zebraidx -t grs.sgml update records
238 </verb></tscreen>
239
240 In the command above the option <tt>-t</tt> specified the record
241 type &mdash; in this case <tt>grs.sgml</tt>. The word <tt>update</tt> followed
242 by a directory root updates all files below that directory node.
243
244 If your indexing command was successful, you are now ready to
245 fire up a server. To start a server on port 2100, type:
246 <tscreen><verb>
247 $ ../index/zebrasrv tcp:@:2100
248 </verb></tscreen>
249
250 The Zebra index that you have just created has a single database
251 named <tt/Default/. The database contains records structured according to
252 the GILS profile, and the server will
253 return records in either either USMARC, GRS-1, or SUTRS depending
254 on what your client asks
255 for.
256
257 To test the server, you can use any Z39.50 client (1992 or later). For
258 instance, you can use the demo client that comes with YAZ: Just cd to
259 the <tt/client/ subdirectory of the YAZ distribution and type:
260
261 <tscreen><verb>
262 $ client tcp:localhost:2100
263 </verb></tscreen>
264
265 When the client has connected, you can type:
266
267 <tscreen><verb>
268 Z> find surficial
269 Z> show 1
270 </verb></tscreen>
271
272 The default retrieval syntax for the client is USMARC. To try other
273 formats for the same record, try:
274
275 <tscreen><verb>
276 Z>format sutrs
277 Z>show 1
278 Z>format grs-1
279 Z>show 1
280 Z>elements B
281 Z>show 1
282 </verb></tscreen>
283
284 <it>NOTE: You may notice that more fields are returned when your
285 client requests SUTRS or GRS-1 records. When retrieving GILS records,
286 this is normal - not all of the GILS data elements have mappings in
287 the USMARC record format.</it>
288
289 If you've made it this far, there's a good chance that
290 you've got through the compilation OK.
291
292 <sect>Administrating Zebra<label id="administrating">
293
294 <p>
295 Unlike many simpler retrieval systems, Zebra supports safe, incremental
296 updates to an existing index.
297
298 Normally, when Zebra modifies the index it reads a number of records
299 that you specify.
300 Depending on your specifications and on the contents of each record
301 one the following events take place for each record:
302 <descrip>
303 <tag>Insert</tag> The record is indexed as if it never occurred
304 before. Either the Zebra system doesn't know how to identify the record or
305 Zebra can identify the record but didn't find it to be already indexed.
306 <tag>Modify</tag> The record has already been indexed. In this case
307 either the contents of the record or the location (file) of the record
308 indicates that it has been indexed before.
309 <tag>Delete</tag> The record is deleted from the index. As in the
310 update-case it must be able to identify the record.
311 </descrip>
312
313 Please note that in both the modify- and delete- case the Zebra
314 indexer must be able to generate a unique key that identifies the record in
315 question (more on this below).
316
317 To administrate the Zebra retrieval system, you run the
318 <tt>zebraidx</tt> program. This program supports a number of options
319 which are preceded by a minus, and a few commands (not preceded by
320 minus).
321
322 Both the Zebra administrative tool and the Z39.50 server share a
323 set of index files and a global configuration file. The
324 name of the configuration file defaults to <tt>zebra.cfg</tt>.
325 The configuration file includes specifications on how to index
326 various kinds of records and where the other configuration files
327 are located. <tt>zebrasrv</tt> and <tt>zebraidx</tt> <em>must</em>
328 be run in the directory where the configuration file lives unless you
329 indicate the location of the configuration file by option
330 <tt>-c</tt>.
331
332 <sect1>Record Types<label id="record-types">
333 <p>
334 Indexing is a per-record process, in which
335 either insert/modify/delete will occur. Before a record is indexed
336 search keys are extracted from whatever might be the layout the
337 original record (sgml,html,text, etc..). The Zebra system 
338 currently only supports SGML-like, structured records and unstructured text
339 records.
340 To specify a particular extraction process, use either the
341 command line option <tt>-t</tt> or specify a
342 <tt>recordType</tt> setting in the configuration file.
343
344 <sect1>The Zebra Configuration File<label id="configuration-file">
345 <p>
346 The Zebra configuration file, read by <tt>zebraidx</tt> and
347 <tt>zebrasrv</tt> defaults to <tt>zebra.cfg</tt> unless specified
348 by <tt>-c</tt> option.
349
350 You can edit the configuration file with a normal text editor.
351 Parameter names and values are seperated by colons in the file. Lines
352 starting with a hash sign (<tt/&num;/) are treated as comments.
353
354 If you manage different sets of records that share common
355 characteristics, you can organize the configuration settings for each
356 type into &dquot;groups&dquot;.
357 When <tt>zebraidx</tt> is run and you wish to address a given group
358 you specify the group name with the <tt>-g</tt> option. In this case
359 settings that have the group name as their prefix will be used
360 by <tt>zebraidx</tt>. If no <tt/-g/ option is specified, the settings
361 with no prefix are used.
362
363 In the configuration file, the group name is placed before the option
364 name itself, separated by a dot (.). For instance, to set the record type
365 for group <tt/public/ to <tt/grs.sgml/ (the SGML-like format for structured
366 records) you would write:
367
368 <tscreen><verb>
369 public.recordType: grs.sgml
370 </verb></tscreen>
371
372 To set the default value of the record type to <tt/text/ write:
373
374 <tscreen><verb>
375 recordType: text
376 </verb></tscreen>
377
378 The available configuration settings are summarized below. They will be
379 explained further in the following sections.
380
381 <descrip>
382 <tag><it>group</it>.recordType&lsqb;<it>.name</it>&rsqb;</tag>
383  Specifies how records with the file extension <it>name</it> should
384  be handled by the indexer. This option may also be specified
385  as a command line option (<tt>-t</tt>). Note that if you do not
386  specify a <it/name/, the setting applies to all files. In general,
387  the record type specifier consists of the elements (each
388  element separated by dot), <it>fundamental-type</it>,
389  <it>file-read-type</it> and arguments. Currently, two
390  fundamental types exist, <tt>text</tt> and <tt>grs</tt>.
391  <tag><it>group</it>.recordId</tag>
392  Specifies how the records are to be identified when updated. See
393 section <ref id="locating-records" name="Locating Records">.
394 <tag><it>group</it>.database</tag>
395  Specifies the Z39.50 database name.
396 <tag><it>group</it>.storeKeys</tag>
397  Specifies whether key information should be saved for a given
398  group of records. If you plan to update/delete this type of
399  records later this should be specified as 1; otherwise it
400  should be 0 (default), to save register space. See section
401 <ref id="file-ids" name="Indexing With File Record IDs">.
402 <tag><it>group</it>.storeData</tag>
403  Specifies whether the records should be stored internally
404  in the Zebra system files. If you want to maintain the raw records yourself,
405  this option should be false (0). If you want Zebra to take care of the records
406  for you, it should be true(1).
407 <tag>register</tag> 
408  Specifies the location of the various register files that Zebra uses
409  to represent your databases. See section
410 <ref id="register-location" name="Register Location">.
411 <tag>shadow</tag>
412  Enables the <it/safe update/ facility of Zebra, and tells the system
413  where to place the required, temporary files. See section
414 <ref id="shadow-registers" name="Safe Updating - Using Shadow Registers">.
415 <tag>lockDir</tag>
416  Directory in which various lock files are stored.
417 <tag>keyTmpDir</tag>
418  Directory in which temporary files used during zebraidx' update
419  phase are stored. 
420 <tag>setTmpDir</tag>
421  Specifies the directory that the server uses for temporary result sets.
422  If not specified <tt>/tmp</tt> will be used.
423 <tag>profilePath</tag>
424  Specifies the location of profile specification files.
425 <tag>attset</tag> 
426  Specifies the filename(s) of attribute set files for use in
427  searching. At least the Bib-1 set should be loaded (<tt/bib1.att/).
428  The <tt/profilePath/ setting is used to look for the specified files.
429  See section <ref id="attset-files" name="The Attribute Set Files">
430 <tag>charMap</tag>
431  Specifies the filename of a character mapping. Zebra uses the path,
432  <tt>profilePath</tt>, to locate this file.
433 <tag>memMax</tag>
434  Specifies size of internal memory to use for the zebraidx program. The
435  amount is given in megabytes - default is 4 (4 MB).
436 </descrip>
437 <sect1>Locating Records<label id="locating-records">
438 <p>
439 The default behaviour of the Zebra system is to reference the
440 records from their original location, i.e. where they were found when you
441 ran <tt/zebraidx/. That is, when a client wishes to retrieve a record
442 following a search operation, the files are accessed from the place
443 where you originally put them - if you remove the files (without
444 running <tt/zebraidx/ again, the client will receive a diagnostic
445 message.
446
447 If your input files are not permanent - for example if you retrieve
448 your records from an outside source, or if they were temporarily
449 mounted on a CD-ROM drive,
450 you may want Zebra to make an internal copy of them. To do this,
451 you specify 1 (true) in the <tt>storeData</tt> setting. When
452 the Z39.50 server retrieves the records they will be read from the
453 internal file structures of the system.
454
455 <sect1>Indexing with no Record IDs (Simple Indexing)
456
457 <p>
458 If you have a set of records that is not expected to change over time
459 you may can build your database without record IDs.
460 This indexing method uses less space than the other methods and
461 is simple to use. 
462
463 To use this method, you simply don't provide the <tt>recordId</tt> entry
464 for the group of files that you index. To add a set of records you use
465 <tt>zebraidx</tt> with the <tt>update</tt> command. The
466 <tt>update</tt> command will always add all of the records that it
467 encounters to the index - whether they have already been indexed or
468 not. If the set of indexed files change, you should delete all of the
469 index files, and build a new index from scratch.
470
471 Consider a system in which you have a group of text files called
472 <tt>simple</tt>. That group of records should belong to a Z39.50 database
473 called <tt>textbase</tt>. The following <tt/zebra.cfg/ file will suffice:
474
475 <tscreen><verb>
476 profilePath: /usr/local/yaz
477 attset: bib1.att
478 simple.recordType: text
479 simple.database: textbase
480 </verb></tscreen>
481
482 Since the existing records in an index can not be addressed by their
483 IDs, it is impossible to delete or modify records when using this method.
484
485 <sect1>Indexing with File Record IDs<label id="file-ids">
486
487 <p>
488 If you have a set of files that regularly change over time: Old files
489 are deleted, new ones are added, or existing files are modified, you
490 can benefit from using the <it/file ID/ indexing methodology. Examples
491 of this type of database might include an index of WWW resources, or a
492 USENET news spool area. Briefly speaking, the file key methodology
493 uses the directory paths of the individual records as a unique
494 identifier for each record. To perform indexing of a directory with
495 file keys, again, you specify the top-level directory after the
496 <tt>update</tt> command. The command will recursively traverse the
497 directories and compare each one with whatever have been indexed before in
498 that same directory. If a file is new (not in the previous version of
499 the directory) it is inserted into the registers; if a file was
500 already indexed and it has been modified since the last update,
501 the index is also modified; if a file has been removed since the last
502 visit, it is deleted from the index.
503
504 The resulting system is easy to administrate. To delete a record you
505 simply have to delete the corresponding file (say, with the <tt/rm/
506 command). And to add records you create new files (or directories with
507 files). For your changes to take effect in the register you must run
508 <tt>zebraidx update</tt> with the same directory root again. This mode
509 of operation requires more disk space than simpler indexing methods,
510 but it makes it easier for you to keep the index in sync with a
511 frequently changing set of data. If you combine this system with the
512 <it/safe update/ facility (see below), you never have to take your
513 server offline for maintenance or register updating purposes.
514
515 To enable indexing with pathname IDs, you must specify <tt>file</tt> as
516 the value of <tt>recordId</tt> in the configuration file. In addition,
517 you should set <tt>storeKeys</tt> to <tt>1</tt>, since the Zebra
518 indexer must save additional information about the contents of each record
519 in order to modify the indices correctly at a later time.
520
521 For example, to update records of group <tt>esdd</tt> located below
522 <tt>/data1/records/</tt> you should type:
523 <tscreen><verb>
524 $ zebraidx -g esdd update /data1/records
525 </verb></tscreen>
526
527 The corresponding configuration file includes:
528 <tscreen><verb>
529 esdd.recordId: file
530 esdd.recordType: grs
531 esdd.storeKeys: 1
532 </verb></tscreen>
533
534 <em>Important note: You cannot start out with a group of records with simple
535 indexing (no record IDs as in the previous section) and then later
536 enable file record Ids. Zebra must know from the first time that you
537 index the group that
538 the files should be indexed with file record IDs.
539 </em>
540
541 You cannot explicitly delete records when using this method (using the
542 <bf/delete/ command to <tt/zebraidx/. Instead
543 you have to delete the files from the file system (or move them to a
544 different location)
545 and then run <tt>zebraidx</tt> with the <bf/update/ command.
546
547 <sect1>Indexing with General Record IDs
548 <p>
549 When using this method you construct an (almost) arbritrary, internal
550 record key based on the contents of the record itself and other system
551 information. If you have a group of records that explicitly associates
552 an ID with each record, this method is convenient. For example, the
553 record format may contain a title or a ID-number - unique within the group.
554 In either case you specify the Z39.50 attribute set and use-attribute
555 location in which this information is stored, and the system looks at
556 that field to determine the identity of the record.
557
558 As before, the record ID is defined by the <tt>recordId</tt> setting
559 in the configuration file. The value of the record ID specification
560 consists of one or more tokens separated by whitespace. The resulting
561 ID is
562 represented in the index by concatenating the tokens and separating them by
563 ASCII value (1).
564
565 There are three kinds of tokens:
566 <descrip>
567 <tag>Internal record info</tag> The token refers to a key that is
568 extracted from the record. The syntax of this token is
569  <tt/(/ <em/set/ <tt/,/ <em/use/ <tt/)/, where <em/set/ is the
570 attribute set ordinal number and <em/use/ is the use value of the attribute.
571 <tag>System variable</tag> The system variables are preceded by
572 <verb>$</verb> and immediately followed by the system variable name, which
573 may one of
574  <descrip>
575  <tag>group</tag> Group name.
576  <tag>database</tag> Current database specified.
577  <tag>type</tag> Record type.
578  </descrip>
579 <tag>Constant string</tag> A string used as part of the ID &mdash; surrounded
580  by single- or double quotes.
581 </descrip>
582
583 For instance, the sample GILS records that come with the Zebra
584 distribution contain a
585 unique ID
586 in the Control-Identifier field. This field is mapped to the Bib-1
587 use attribute 1007. To use this field as a record id, specify
588 <tt>(1,1007)</tt> as the value of the <tt>recordId</tt> in the
589 configuration file. If you have other record types that uses
590 the same field for a different purpose, you might add the record type (or group or database name)
591 to the record id of the gils records as well, to prevent matches
592 with other types of records. In this case the recordId might be
593 set like this:
594 <tscreen><verb>
595 gils.recordId: $type (1,1007)
596 </verb></tscreen>
597
598 (see section <ref id="data-model" name="Configuring Your Data Model">
599 for details of how the mapping between elements of your records and
600 searchable attributes is established).
601
602 As for the file record ID case described in the previous section,
603 updating your system is simply a matter of running <tt>zebraidx</tt>
604 with the <tt>update</tt> command. However, the update with general
605 keys is considerably slower than with file record IDs, since all files
606 visited must be (re)read to discover their IDs. 
607
608 As you might expect, when using the general record IDs
609 method, you can only add or modify existing records with the <tt>update</tt>
610 command. If you wish to delete records, you must use the,
611 <tt>delete</tt> command, with a directory as a parameter.
612 This will remove all records that match the files below that root
613 directory.
614
615 <sect1>Register Location<label id="register-location">
616
617 <p>
618 Normally, the index files that form dictionaries, inverted
619 files, record info, etc., are stored in the directory where you run
620 <tt>zebraidx</tt>. If you wish to store these, possibly large, files
621 somewhere else, you must add the <tt>register</tt> entry to the
622 <tt/zebra.cfg/ file. Furthermore, the Zebra system allows its file
623 structures to
624 span multiple file systems, which is useful for managing very large
625 databases. 
626
627 The value of the <tt>register</tt> setting is a sequence of tokens.
628 Each token takes the form:
629 <tscreen>
630 <em>dir</em><tt>:</tt><em>size</em>. 
631 </tscreen>
632 The <em>dir</em> specifies a directory in which index files will be
633 stored and the <em>size</em> specifies the maximum size of all
634 files in that directory. The Zebra indexer system fills each directory
635 in the order specified and use the next specified directories as needed.
636 The <em>size</em> is an integer followed by a qualifier
637 code, <tt>M</tt> for megabytes, <tt>k</tt> for kilobytes.
638
639 For instance, if you have allocated two disks for your register, and
640 the first disk is mounted
641 on <tt>/d1</tt> and has 200 Mb of free space and the
642 second, mounted on <tt>/d2</tt> has 300 Mb, you could
643 put this entry in your configuration file:
644 <tscreen><verb>
645 register: /d1:200M /d2:300M
646 </verb></tscreen>
647
648 Note that Zebra does not verify that the amount of space specified is
649 actually available on the directory (file system) specified - it is
650 your responsibility to ensure that enough space is available, and that
651 other applications do not attempt to use the free space. In a large production system,
652 it is recommended that you allocate one or more filesystem exclusively
653 to the Zebra register files.
654
655 <sect1>Safe Updating - Using Shadow Registers<label id="shadow-registers">
656
657 <sect2>Description
658
659 <p>
660 The Zebra server supports <it/updating/ of the index structures. That is,
661 you can add, modify, or remove records from databases managed by Zebra
662 without rebuilding the entire index. Since this process involves
663 modifying structured files with various references between blocks of
664 data in the files, the update process is inherently sensitive to
665 system crashes, or to process interruptions: Anything but a
666 successfully completed update process will leave the register files in
667 an unknown state, and you will essentially have no recourse but to
668 re-index everything, or to restore the register files from a backup
669 medium. Further, while the update process is active, users cannot be
670 allowed to access the system, as the contents of the register files
671 may change unpredictably.
672
673 You can solve these problems by enabling the shadow register system in
674 Zebra. During the updating procedure, <tt/zebraidx/ will temporarily
675 write changes to the involved files in a set of &dquot;shadow
676 files&dquot;, without modifying the files that are accessed by the
677 active server processes. If the update procedure is interrupted by a
678 system crash or a signal, you simply repeat the procedure - the
679 register files have not been changed or damaged, and the partially
680 written shadow files are automatically deleted before the new updating
681 procedure commences.
682
683 At the end of the updating procedure (or in a separate operation, if
684 you so desire), the system enters a &dquot;commit mode&dquot;. First,
685 any active server processes are forced to access those blocks that
686 have been changed from the shadow files rather than from the main
687 register files; the unmodified blocks are still accessed at their
688 normal location (the shadow files are not a complete copy of the
689 register files - they only contain those parts that have actually been
690 modified). If the commit process is interrupted at any point during the
691 commit process, the server processes will continue to access the
692 shadow files until you can repeat the commit procedure and complete
693 the writing of data to the main register files. You can perform
694 multiple update operations to the registers before you commit the
695 changes to the system files, or you can execute the commit operation
696 at the end of each update operation. When the commit phase has
697 completed successfully, any running server processes are instructed to
698 switch their operations to the new, operational register, and the
699 temporary shadow files are deleted.
700
701 <sect2>How to Use Shadow Register Files
702
703 <p>
704 The first step is to allocate space on your system for the shadow
705 files. You do this by adding a <tt/shadow/ entry to the <tt/zebra.cfg/
706 file. The syntax of the <tt/shadow/ entry is exactly the same as for
707 the <tt/register/ entry (see section <ref name="Register Location"
708 id="register-location">). The location of the shadow area should be
709 <it/different/ from the location of the main register area (if you
710 have specified one - remember that if you provide no <tt/register/
711 setting, the default register area is the
712 working directory of the server and indexing processes).
713
714 The following excerpt from a <tt/zebra.cfg/ file shows one example of
715 a setup that configures both the main register location and the shadow
716 file area. Note that two directories or partitions have been set aside
717 for the shadow file area. You can specify any number of directories
718 for each of the file areas, but remember that there should be no
719 overlaps between the directories used for the main registers and the
720 shadow files, respectively.
721
722 <tscreen><verb>
723 register: /d1:500M
724
725 shadow: /scratch1:100M /scratch2:200M
726 </verb></tscreen>
727
728 When shadow files are enabled, an extra command is available at the
729 <tt/zebraidx/ command line. In order to make changes to the system
730 take effect for the users, you'll have to submit a
731 &dquot;commit&dquot; command after a (sequence of) update
732 operation(s). You can ask the indexer to commit the changes
733 immediately after the update operation:
734
735 <tscreen><verb>
736 $ zebraidx update /d1/records update /d2/more-records commit
737 </verb></tscreen>
738
739 Or you can execute multiple updates before committing the changes:
740
741 <tscreen><verb>
742 $ zebraidx -g books update /d1/records update /d2/more-records
743 $ zebraidx -g fun update /d3/fun-records
744 $ zebraidx commit
745 </verb></tscreen>
746
747 If one of the update operations above had been interrupted, the commit
748 operation on the last line would fail: <tt/zebraidx/ will not let you
749 commit changes that would destroy the running register. You'll have to
750 rerun all of the update operations since your last commit operation,
751 before you can commit the new changes.
752
753 Similarly, if the commit operation fails, <tt/zebraidx/ will not let
754 you start a new update operation before you have successfully repeated
755 the commit operation. The server processes will keep accessing the
756 shadow files rather than the (possibly damaged) blocks of the main
757 register files until the commit operation has successfully completed.
758
759 You should be aware that update operations may take slightly longer
760 when the shadow register system is enabled, since more file access
761 operations are involved. Further, while the disk space required for
762 the shadow register data is modest for a small update operation, you
763 may prefer to disable the system if you are adding a very large number
764 of records to an already very large database (we use the terms
765 <it/large/ and <it/modest/ very loosely here, since every
766 application will have a different perception of size). To update the system
767 without the use of the the shadow files, simply run <tt/zebraidx/ with
768 the <tt/-n/ option (note that you do not have to execute the
769 <bf/commit/ command of <tt/zebraidx/ when you temporarily disable the
770 use of the shadow registers in this fashion. Note also that, just as
771 when the shadow registers are not enabled, server processes will be
772 barred from accessing the main register while the update procedure
773 takes place.
774
775 <sect>Running the Maintenance Interface (zebraidx)
776
777 <p>
778 The following is a complete reference to the command line interface to
779 the <tt/zebraidx/ application.
780
781 <bf/Syntax/
782 <tscreen><verb>
783 $ zebraidx &lsqb;options&rsqb; command &lsqb;directory&rsqb; ...
784 </verb></tscreen>
785 <bf/Options/
786 <descrip>
787 <tag>-t <it/type/</tag>Update all files as <it/type/. Currently, the
788 types supported are <tt/text/ and <tt/grs/<it/.filter/. If no
789 <it/filter/ is provided for the GRS (General Record Structure) type,
790 the canonical input format is assumed (see section <ref
791 id="local-representation" name="Local Representation">). Generally, it
792 is probably advisable to specify the record types in the
793 <tt/zebra.cfg/ file (see section <ref id="record-types" name="Record Types">).
794
795 <tag>-c <it/config-file/</tag>Read the configuration file
796 <it/config-file/ instead of <tt/zebra.cfg/.
797
798 <tag>-g <it/group/</tag>Update the files according to the group
799 settings for <it/group/ (see section <ref id="configuration-file"
800 name="The Zebra Configuration File">).
801
802 <tag>-d <it/database/</tag>The records located should be associated
803 with the database name <it/database/ for access through the Z39.50
804 server.
805
806 <tag>-d <it/mbytes/</tag>Use <it/mbytes/ of megabytes before flushing
807 keys to background storage. This setting affects performance when
808 updating large databases.
809
810 <tag>-n</tag>Disable the use of shadow registers for this operation
811 (see section <ref id="shadow-registers" name="Robust Updating - Using
812 Shadow Registers">).
813
814 <tag>-v <it/level/</tag>Set the log level to <it/level/. <it/level/
815 should be one of <tt/none/, <tt/debug/, and <tt/all/.
816
817 </descrip>
818
819 <bf/Commands/
820 <descrip>
821 <tag>Update <it/directory/</tag>Update the register with the files
822 contained in <it/directory/. If no directory is provided, a list of
823 files is read from <tt/stdin/. See section <ref
824 id="administrating" name="Administrating Zebra">.
825
826 <tag>Delete <it/directory/</tag>Remove the records corresponding to
827 the files found under <it/directory/ from the register.
828
829 <tag/Commit/Write the changes resulting from the last <bf/update/
830 commands to the register. This command is only available if the use of
831 shadow register files is enabled (see section <ref
832 id="shadow-registers" name="Robust Updating - Using Shadow
833 Registers">).
834
835 </descrip>
836
837 <sect>The Z39.50 Server
838
839 <sect1>Running the Z39.50 Server (zebrasrv)
840
841 <p>
842 <bf/Syntax/
843 <tscreen><verb>
844 zebrasrv &lsqb;options&rsqb; &lsqb;listener-address ...&rsqb;
845 </verb></tscreen>
846
847 <bf/Options/
848 <descrip>
849 <tag>-a <it/APDU file/</tag> Specify a file for dumping PDUs (for diagnostic purposes).
850 The special name &dquot;-&dquot; sends output to <tt/stderr/.
851
852 <tag>-c <it/config-file/</tag> Read configuration information from <it/config-file/. The default configuration is <tt>./zebra.cfg</tt>.
853
854 <tag/-S/Don't fork on connection requests. This can be useful for
855 symbolic-level debugging. The server can only accept a single
856 connection in this mode.
857
858 <tag/-s/Use the SR protocol.
859
860 <tag/-z/Use the Z39.50 protocol (default). These two options complement
861 eachother. You can use both multiple times on the same command
862 line, between listener-specifications (see below). This way, you
863 can set up the server to listen for connections in both protocols
864 concurrently, on different local ports.
865
866 <tag>-l <it/logfile/</tag>Specify an output file for the diagnostic
867 messages. The default is to write this information to <tt/stderr/.
868
869 <tag>-v <it/log-level/</tag>The log level. Use a comma-separated list of members of the set
870 {fatal,debug,warn,log,all,none}.
871
872 <tag>-u <it/username/</tag>Set user ID. Sets the real UID of the server process to that of the
873 given <it/username/. It's useful if you aren't comfortable with having the
874 server run as root, but you need to start it as such to bind a
875 privileged port.
876
877 <tag>-w <it/working-directory/</tag>Change working directory.
878
879 <tag>-i <it/minutes/</tag>Run under the Internet superserver, <tt/inetd/.
880
881 <tag>-t <it/timeout/</tag>Set the idle session timeout (default 60 minutes).
882
883 <tag>-k <it/kilobytes/</tag>Set the (approximate) maximum size of
884 present response messages. Default is 1024 Kb (1 Mb).
885 </descrip>
886
887 A <it/listener-address/ consists of a transport mode followed by a
888 colon (:) followed by a listener address. The transport mode is
889 either <tt/osi/ or <tt/tcp/.
890
891 For TCP, an address has the form
892
893 <tscreen><verb>
894 hostname | IP-number &lsqb;: portnumber&rsqb;
895 </verb></tscreen>
896
897 The port number defaults to 210 (standard Z39.50 port).
898
899 For OSI (only available if the server is compiled with XTI/mOSI
900 support enabled), the address form is
901
902 <tscreen><verb>
903 &lsqb;t-selector /&rsqb; hostname | IP-number &lsqb;: portnumber&rsqb;
904 </verb></tscreen>
905
906 The transport selector is given as a string of hex digits (with an even
907 number of digits). The default port number is 102 (RFC1006 port).
908
909 Examples
910
911 <tscreen>
912 <verb>
913 tcp:dranet.dra.com
914
915 osi:0402/dbserver.osiworld.com:3000
916 </verb>
917 </tscreen>
918
919 In both cases, the special hostname &dquot;@&dquot; is mapped to
920 the address INADDR_ANY, which causes the server to listen on any local
921 interface. To start the server listening on the registered ports for
922 Z39.50 and SR over OSI/RFC1006, and to drop root privileges once the
923 ports are bound, execute the server like this (from a root shell):
924
925 <tscreen><verb>
926 zebrasrv -u daemon tcp:@ -s osi:@
927 </verb></tscreen>
928
929 You can replace <tt/daemon/ with another user, eg. your own account, or
930 a dedicated IR server account.
931
932 The default behavior for <tt/zebrasrv/ is to establish a single TCP/IP
933 listener, for the Z39.50 protocol, on port 9999.
934
935 <sect1>Z39.50 Protocol Support and Behavior
936
937 <sect2>Initialization
938
939 <p>
940 During initialization, the server will negotiate to version 3 of the
941 Z39.50 protocol, and the option bits for Search, Present, Scan,
942 NamedResultSets, and concurrentOperations will be set, if requested by
943 the client. The maximum PDU size is negotiated down to a maximum of
944 1Mb by default.
945
946 <sect2>Search
947
948 <p>
949 The supported query type are 1 and 101. All operators are currently
950 supported except that only proximity units of type "word" are supported
951 for the proximity operator. Queries can be arbitrarily complex. Named
952 result sets are supported, and result sets can be used as operands with
953 no limitations. Searches may span multiple databases.
954
955 The server has full support for piggy-backed present requests (see
956 also the following section).
957
958 <bf/Use/ attributes are interpreted according to the attribute sets which
959 have been loaded in the <tt/zebra.cfg/ file, and are matched against
960 specific fields as specified in the <tt/.abs/ file which describes the
961 profile of the records which have been loaded. If no <bf/Use/
962 attribute is provided, a default of <bf/Any/ is assumed.
963
964 If a <bf/Structure/ attribute of <bf/Phrase/ is used in conjunction with a
965 <bf/Completeness/ attribute of <bf/Complete (Sub)field/, the term is
966 matched against the contents of a phrase (long word) register, if one
967 exists for the given <bf/Use/ attribute. If <bf/Structure/=<bf/Phrase/
968 is used in conjunction with <bf/Incomplete Field/ - the default value
969 for <bf/Completeness/, the search is directed against the normal word
970 registers, but if the term contains multiple words, the term will only
971 match if all of the words are found immediately adjacent, and in the
972 given order. If the <bf/Structure/ attribute is <bf/Word List/,
973 <bf/Free-form Text/, or <bf/Document Text/, the term is treated as a
974 natural-language, relevance-ranked query.
975
976 If the <bf/Relation/ attribute is <bf/Equals/ (default), the term is
977 matched in a normal fashion (modulo truncation and processing of
978 individual words, if required). If <bf/Relation/ is <bf/Less Than/,
979 <bf/Less Than or Equal/, <bf/Greater than/, or <bf/Greater than or
980 Equal/, the term is assumed to be numerical, and a standard regular
981 expression is constructed to match the given expression. If
982 <bf/Relation/ is <bf/Relevance/, the standard natural-language query
983 processor is invoked.
984
985 For the <bf/Truncation/ attribute, <bf/No Truncation/ is the default.
986 <bf/Left Truncation/ is not supported. <bf/Process &num;/ is supported, as
987 is <bf/Regxp-1/. <bf/Regxp-2/ enables the fault-tolerant (fuzzy)
988 search. As a default, a single error (deletion, insertion,
989 replacement) is accepted when terms are matched against the register
990 contents. The <bf/Regxp-1/ and <bf/Regxp-2/ both follow the same syntax
991 with the operands:
992 <descrip>
993 <tag/x/ Matches the character <it/x/.
994 <tag/./ Matches any character.
995 <tag><tt/[/..<tt/]/</tag> Matches the set of characters specified;
996  such as <tt/[abc]/ or <tt/[a-c]/.
997 </descrip>
998 and the operators:
999 <descrip>
1000 <tag/x*/ Matches <it/x/ zero or more times. Priority: high.
1001 <tag/x+/ Matches <it/x/ one or more times. Priority: high.
1002 <tag/x?/ Matches <it/x/ once or twice. Priority: high.
1003 <tag/xy/ Matches <it/x/, then <it/y/. Priority: medium.
1004 <tag/x|y/ Matches either <it/x/ or <it/y/. Priority: low.
1005 </descrip>
1006 The order of evaluation may be changed by using parentheses.
1007
1008 If the first character of the <bf/Regxp-2/ query is a plus character
1009 (<tt/+/) it marks the beginning of a section with non-standard
1010 specifiers. The next plus character marks the end of the section.
1011 Currently Zebra only supports one specifier, the error tolerance,
1012 which consists one digit. 
1013
1014 Since the plus operator is normally a suffix operator the addition to
1015 the query syntax doesn't violate the syntax for standard regular
1016 expressions.
1017
1018 <sect2>Present
1019
1020 <p>
1021 The present facility is supported in a standard fashion. The requested
1022 record syntax is matched against the ones supported by the profile of
1023 each record retrieved. If no record syntax is given, SUTRS is the
1024 default. The requested element set name, again, is matched against any
1025 provided by the relevant record profiles.
1026
1027 <sect2>Scan
1028
1029 <p>
1030 The attribute combinations provided with the TermListAndStartPoint are
1031 processed in the same way as operands in a query (see above).
1032 Currently, only the term and the globalOccurrences are returned with
1033 the TermInfo structure.
1034
1035 <sect2>Close
1036
1037 <p>
1038 If a Close PDU is received, the server will respond with a Close PDU
1039 with reason=FINISHED, no matter which protocol version was negotiated
1040 during initialization. If the protocol version is 3 or more, the
1041 server will generate a Close PDU under certain circumstances,
1042 including a session timeout (60 minutes by default), and certain kinds of
1043 protocol errors. Once a Close PDU has been sent, the protocol
1044 association is considered broken, and the transport connection will be
1045 closed immediately upon receipt of further data, or following a short
1046 timeout.
1047
1048 <sect>The Record Model
1049
1050 <p>
1051 The Zebra system is designed to support a wide range of data management
1052 applications. The system can be configured to handle virtually any
1053 kind of structured data. Each record in the system is associated with
1054 a <it/record schema/ which lends context to the data elements of the
1055 record. Any number of record schema can coexist in the system.
1056 Although it may be wise to use only a single schema within
1057 one database, the system poses no such restrictions.
1058
1059 The record model described in this chapter applies to the fundamental
1060 record type <tt>grs</tt> as introduced in
1061 section <ref id="record-types" name="Record Types">.
1062
1063 Records pass through three different states during processing in the
1064 system.
1065
1066 <itemize>
1067 <item>When records are accessed by the system, they are represented
1068 in their local, or native format. This might be SGML or HTML files,
1069 News or Mail archives, MARC records. If the system doesn't already
1070 know how to read the type of data you need to store, you can set up an
1071 input filter by preparing conversion rules based on regular
1072 expressions and a flexible scripting language (Tcl). The input filter
1073 produces as output an internal representation:
1074
1075 <item>When records are processed by the system, they are represented
1076 in a tree-structure, constructed by tagged data elements hanging off a
1077 root node. The tagged elements may contain data or yet more tagged
1078 elements in a recursive structure. The system performs various
1079 actions on this tree structure (indexing, element selection, schema
1080 mapping, etc.),
1081
1082 <item>Before transmitting records to the client, they are first
1083 converted from the internal structure to a form suitable for exchange
1084 over the network - according to the Z39.50 standard.
1085 </itemize>
1086
1087 <sect1>Local Representation<label id="local-representation">
1088
1089 <p>
1090 As mentioned earlier, Zebra places few restrictions on the type of
1091 data that you can index and manage. Generally, whatever the form of
1092 the data, it is parsed by an input filter specific to that format, and
1093 turned into an internal structure that Zebra knows how to handle. This
1094 process takes place whenever the record is accessed - for indexing and
1095 retrieval.
1096
1097 <sect2>Canonical Input Format
1098
1099 <p>
1100 Although input data can take any form, it is sometimes useful to
1101 describe the record processing capabilities of the system in terms of
1102 a single, canonical input format that gives access to the full
1103 spectrum of structure and flexibility in the system. In Zebra, this
1104 canonical format is an &dquot;SGML-like&dquot; syntax.
1105
1106 To use the canonical format specify <tt>grs.sgml</tt> as the record
1107 type,
1108
1109 Consider a record describing an information resource (such a record is
1110 sometimes known as a <it/locator record/). It might contain a field
1111 describing the distributor of the information resource, which might in
1112 turn be partitioned into various fields providing details about the
1113 distributor, like this:
1114
1115 <tscreen><verb>
1116 <Distributor>
1117     <Name> USGS/WRD &etago;Name>
1118     <Organization> USGS/WRD &etago;Organization>
1119     <Street-Address>
1120         U.S. GEOLOGICAL SURVEY, 505 MARQUETTE, NW
1121     &etago;Street-Address>
1122     <City> ALBUQUERQUE &etago;City>
1123     <State> NM &etago;State>
1124     <Zip-Code> 87102 &etago;Zip-Code>
1125     <Country> USA &etago;Country>
1126     <Telephone> (505) 766-5560 &etago;Telephone>
1127 &etago;Distributor>
1128 </verb></tscreen>
1129
1130 <it>NOTE: The indentation used above is used to illustrate how Zebra
1131 interprets the markup. The indentation, in itself, has no
1132 significance to the parser for the canonical input format, which
1133 discards superfluous whitespace.</it>
1134
1135 The keywords surrounded by &lt;...&gt; are <it/tags/, while the
1136 sections of text in between are the <it/data elements/. A data element
1137 is characterized by its location in the tree that is made up by the
1138 nested elements. Each element is terminated by a closing tag -
1139 beginning with &etago;, and containing the same symbolic tag-name as
1140 the corresponding opening tag. The general closing tag - &etago;&gt; -
1141 terminates the element started by the last opening tag. The
1142 structuring of elements is significant. The element <bf/Telephone/,
1143 for instance, may be indexed and presented to the client differently,
1144 depending on whether it appears inside the <bf/Distributor/ element,
1145 or some other, structured data element such a <bf/Supplier/ element.
1146
1147 <sect3>Record Root
1148
1149 <p>
1150 The first tag in a record describes the root node of the tree that
1151 makes up the total record. In the canonical input format, the root tag
1152 should contain the name of the schema that lends context to the
1153 elements of the record (see section <ref id="internal-representation"
1154 name="Internal Representation">). The following is a GILS record that
1155 contains only a single element (strictly speaking, that makes it an
1156 illegal GILS record, since the GILS profile includes several mandatory
1157 elements - Zebra does not validate the contents of a record against
1158 the Z39.50 profile, however - it merely attempts to match up elements
1159 of a local representation with the given schema):
1160
1161 <tscreen><verb>
1162 <gils>
1163     <title>Zen and the Art of Motorcycle Maintenance&etago;title>
1164 &etago;gils>
1165 </verb></tscreen>
1166
1167 <sect3>Variants
1168
1169 <p>
1170 Zebra allows you to provide individual data elements in a number of
1171 <it/variant forms/. Examples of variant forms are textual data
1172 elements which might appear in different languages, and images which
1173 may appear in different formats or layouts. The variant system in
1174 Zebra is
1175 essentially a representation of the variant mechanism of
1176 Z39.50-1995.
1177
1178 The following is an example of a title element which occurs in two
1179 different languages.
1180
1181 <tscreen><verb>
1182 <title>
1183   <var lang lang "eng">
1184     Zen and the Art of Motorcycle Maintenance&etago;>
1185   <var lang lang "dan">
1186     Zen og Kunsten at Vedligeholde en Motorcykel&etago;>
1187 &etago;title>
1188 </verb></tscreen>
1189
1190 The syntax of the <it/variant element/ is <tt>&lt;<bf/var/ <it/class
1191 type value/&gt;</tt>. The available values for the <it/class/ and
1192 <it/type/ fields are given by the variant set that is associated with the
1193 current schema (see section <ref id="variant-set" name="Variant Set
1194 File">).
1195
1196 Variant elements are terminated by the general end-tag &etago;>, by
1197 the variant end-tag &etago;var>, by the appearance of another variant
1198 tag with the same <it/class/ and <it/value/ settings, or by the
1199 appearance of another, normal tag. In other words, the end-tags for
1200 the variants used in the example above could have been saved.
1201
1202 Variant elements can be nested. The element
1203
1204 <tscreen><verb>
1205 <title>
1206   <var lang lang "eng"><var body iana "text/plain">
1207     Zen and the Art of Motorcycle Maintenance
1208 &etago;title>
1209 </verb></tscreen>
1210
1211 Associates two variant components to the variant list for the title
1212 element.
1213
1214 Given the nesting rules described above, we could write
1215
1216 <tscreen><verb>
1217 <title>
1218   <var body iana "text/plain>
1219     <var lang lang "eng">
1220       Zen and the Art of Motorcycle Maintenance
1221     <var lang lang "dan">
1222       Zen og Kunsten at Vedligeholde en Motorcykel
1223 &etago;title>
1224 </verb></tscreen>
1225
1226 The title element above comes in two variants. Both have the IANA body
1227 type &dquot;text/plain&dquot;, but one is in English, and the other in
1228 Danish. The client, using the element selection mechanism of Z39.50,
1229 can retrieve information about the available variant forms of data
1230 elements, or it can select specific variants based on the requirements
1231 of the end-user.
1232
1233 <sect2>Input Filters
1234
1235 <p>
1236 In order to handle general input formats, Zebra allows the
1237 operator to define filters which read individual records in their native format
1238 and produce an internal representation that the system can
1239 work with.
1240
1241 Input filters are ASCII files, generally with the suffix <tt/.flt/.
1242 The system looks for the files in the directories given in the
1243 <bf/profilePath/ setting in the <tt/zebra.cfg/ files. The record type
1244 for the filter is <tt>grs.regx.</tt><it>filter-filename</it>
1245 (fundamental type <tt>grs</tt>, file read type <tt>regx</tt>, argument
1246 <it>filter-filename</it>).
1247
1248 Generally, an input filter consists of a sequence of rules, where each
1249 rule consists of a sequence of expressions, followed by an action. The
1250 expressions are evaluated against the contents of the input record,
1251 and the actions normally contribute to the generation of an internal
1252 representation of the record.
1253
1254 An expression can be either of the following:
1255
1256 <descrip>
1257 <tag/INIT/The action associated with this expression is evaluated
1258 exactly once in the lifetime of the application, before any records
1259 are read. It can be used in conjunction with an action that
1260 initializes tables or other resources that are used in the processing
1261 of input records.
1262
1263 <tag/BEGIN/Matches the beginning of the record. It can be used to
1264 initialize variables, etc. Typically, the <bf/BEGIN/ rule is also used
1265 to establish the root node of the record.
1266
1267 <tag/END/Matches the end of the record - when all of the contents
1268 of the record has been processed.
1269
1270 <tag>/pattern/</tag>Matches a string of characters from the input
1271 record.
1272
1273 <tag/BODY/This keyword may only be used between two patterns. It
1274 matches everything between (not including) those patterns.
1275
1276 <tag/FINISH/THe expression asssociated with this pattern is evaluated
1277 once, before the application terminates. It can be used to release
1278 system resources - typically ones allocated in the <bf/INIT/ step.
1279
1280 </descrip>
1281
1282 An action is surrounded by curly braces ({...}), and consists of a
1283 sequence of statements. Statements may be separated by newlines or
1284 semicolons (;). Within actions, the strings that matched the
1285 expressions immediately preceding the action can be referred to as
1286 &dollar;0, &dollar;1, &dollar;2, etc.
1287
1288 The available statements are:
1289
1290 <descrip>
1291
1292 <tag>begin <it/type &lsqb;parameter ... &rsqb;/</tag>Begin a new
1293 data element. The type is one of the following:
1294 <descrip>
1295 <tag/record/Begin a new record. The followingparameter should be the
1296 name of the schema that describes the structure of the record, eg.
1297 <tt/gils/ or <tt/wais/ (see below). The <tt/begin record/ call should
1298 precede
1299 any other use of the <bf/begin/ statement.
1300
1301 <tag/element/Begin a new tagged element. The parameter is the
1302 name of the tag. If the tag is not matched anywhere in the tagsets
1303 referenced by the current schema, it is treated as a local string
1304 tag.
1305
1306 <tag/variant/Begin a new node in a variant tree. The parameters are
1307 <it/class type value/.
1308
1309 </descrip>
1310
1311 <tag/data/Create a data element. The concatenated arguments make
1312 up the value of the data element. The option <tt/-text/ signals that
1313 the layout (whitespace) of the data should be retained for
1314 transmission. The option <tt/-element/ <it/tag/ wraps the data up in
1315 the <it/tag/. The use of the <tt/-element/ option is equivalent to
1316 preceding the command with a <bf/begin element/ command, and following
1317 it with the <bf/end/ command.
1318
1319 <tag>end <it/&lsqb;type&rsqb;/</tag>Close a tagged element. If no parameter is given,
1320 the last element on the stack is terminated. The first parameter, if
1321 any, is a type name, similar to the <bf/begin/ statement. For the
1322 <bf/element/ type, a tag name can be provided to terminate a specific tag.
1323
1324 </descrip>
1325
1326 The following input filter reads a Usenet news file, producing a
1327 record in the WAIS schema. Note that the body of a news posting is
1328 separated from the list of headers by a blank line (or rather a
1329 sequence of two newline characters.
1330
1331 <tscreen><verb>
1332 BEGIN                { begin record wais }
1333
1334 /^From:/ BODY /$/    { data -element name $1 }
1335 /^Subject:/ BODY /$/ { data -element title $1 }
1336 /^Date:/ BODY /$/    { data -element lastModified $1 }
1337 /\n\n/ BODY END      {
1338                         begin element bodyOfDisplay
1339                         begin variant body iana "text/plain"
1340                         data -text $1
1341                         end record
1342                      }
1343 </verb></tscreen>
1344
1345 If Zebra is compiled with support for Tcl (Tool Command Language)
1346 enabled, the statements described above are supplemented with a complete
1347 scripting environment, including control structures (conditional
1348 expressions and loop constructs), and powerful string manipulation
1349 mechanisms for modifying the elements of a record. Tcl is a popular
1350 scripting environment, with several tutorials available both online
1351 and in hardcopy.
1352
1353 <it>NOTE: Tcl support is not currently available, but will be
1354 included with one of the next alpha or beta releases.</it>
1355
1356 <it>NOTE: Variant support is not currently available in the input
1357 filter, but will be included with one of the next alpha or beta
1358 releases.</it>
1359
1360 <sect1>Internal Representation<label id="internal-representation">
1361
1362 <p>
1363 When records are manipulated by the system, they're represented in a
1364 tree-structure, with data elements at the leaf nodes, and tags or
1365 variant components at the non-leaf nodes. The root-node identifies the
1366 schema that lends context to the tagging and structuring of the
1367 record. Imagine a simple record, consisting of a 'title' element and
1368 an 'author' element:
1369
1370 <tscreen><verb>
1371         TITLE     "Zen and the Art of Motorcycle Maintenance"
1372 ROOT 
1373         AUTHOR    "Robert Pirsig"
1374 </verb></tscreen>
1375
1376 A slightly more complex record would have the author element consist
1377 of two elements, a surname and a first name:
1378
1379 <tscreen><verb>
1380         TITLE     "Zen and the Art of Motorcycle Maintenance"
1381 ROOT  
1382                   FIRST-NAME "Robert"
1383         AUTHOR
1384                   SURNAME    "Pirsig"
1385 </verb></tscreen>
1386
1387 The root of the record will refer to the record schema that describes
1388 the structuring of this particular record. The schema defines the
1389 element tags (TITLE, FIRST-NAME, etc.) that may occur in the record, as
1390 well as the structuring (SURNAME should appear below AUTHOR, etc.). In
1391 addition, the schema establishes element set names that are used by
1392 the client to request a subset of the elements of a given record. The
1393 schema may also establish rules for converting the record to a
1394 different schema, by stating, for each element, a mapping to a
1395 different tag path.
1396
1397 <sect2>Tagged Elements
1398
1399 <p>
1400 A data element is characterized by its tag, and its position in the
1401 structure of the record. For instance, while the tag &dquot;telephone
1402 number&dquot; may be used different places in a record, we may need to
1403 distinguish between these occurrences, both for searching and
1404 presentation purposes. For instance, while the phone numbers for the
1405 &dquot;customer&dquot; and the &dquot;service provider&dquot; are both
1406 representatives for the same type of resource (a telephone number), it
1407 is essential that they be kept separate. The record schema provides
1408 the structure of the record, and names each data element (defined by
1409 the sequence of tags - the tag path - by which the element can be
1410 reached from the root of the record).
1411
1412 <sect2>Variants
1413
1414 <p>
1415 The children of a tag node may be either more tag nodes, a data node
1416 (possibly accompanied by tag nodes),
1417 or a tree of variant nodes. The children of  variant nodes are either
1418 more variant nodes or a data node (possibly accompanied by more
1419 variant nodes). Each leaf node, which is normally a
1420 data node, corresponds to a <it/variant form/ of the tagged element
1421 identified by the tag which parents the variant tree. The following
1422 title element occurs in two different languages:
1423
1424 <tscreen><verb>
1425       VARIANT LANG=ENG  "War and Peace"
1426 TITLE
1427       VARIANT LANG=DAN  "Krig og Fred"
1428 </verb></tscreen>
1429
1430 Which of the two elements are transmitted to the client by the server
1431 depends on the specifications provided by the client, if any.
1432
1433 In practice, each variant node is associated with a triple of class,
1434 type, value, corresponding to the variant mechanism of Z39.50.
1435
1436 <sect2>Data Elements
1437
1438 <p>
1439 Data nodes have no children (they are always leaf nodes in the record
1440 tree).
1441
1442 <it>NOTE: Documentation needs extension here about types of nodes - numerical,
1443 textual, etc., plus the various types of inclusion notes.</it>
1444
1445 <sect1>Configuring Your Data Model<label id="data-model">
1446
1447 <p>
1448 The following sections describe the configuration files that govern
1449 the internal management of data records. The system searches for the files
1450 in the directories specified by the <bf/profilePath/ setting in the
1451 <tt/zebra.cfg/ file.
1452
1453 <sect2>The Abstract Syntax
1454
1455 <p>
1456 The abstract syntax definition (also known as an Abstract Record
1457 Structure, or ARS) is the focal point of the
1458 record schema description. For a given schema, the ABS file may state any
1459 or all of the following:
1460
1461 <itemize>
1462 <item>The object identifier of the Z39.50 schema associated
1463 with the ARS, so that it can be referred to by the client.
1464
1465 <item>The attribute set (which can possibly be a compound of multiple
1466 sets) which applies in the profile. This is used when indexing and
1467 searching the records belonging to the given profile.
1468
1469 <item>The Tag set (again, this can consist of several different sets).
1470 This is used when reading the records from a file, to recognize the
1471 different tags, and when transmitting the record to the client -
1472 mapping the tags to their numerical representation, if they are
1473 known.
1474
1475 <item>The variant set which is used in the profile. This provides a
1476 vocabulary for specifying the <it/forms/ of data that appear inside
1477 the records.
1478
1479 <item>Element set names, which are a shorthand way for the client to
1480 ask for a subset of the data elements contained in a record. Element
1481 set names, in the retrieval module, are mapped to <it/element
1482 specifications/, which contain information equivalent to the
1483 <it/Espec-1/ syntax of Z39.50.
1484
1485 <item>Map tables, which may specify mappings to <it/other/ database
1486 profiles, if desired.
1487
1488 <item>Possibly, a set of rules describing the mapping of elements to a
1489 MARC representation.
1490
1491 <item>A list of element descriptions (this is the actual ARS of the
1492 schema, in Z39.50 terms), which lists the ways in which the various
1493 tags can be used and organized hierarchically.
1494 </itemize>
1495
1496 Several of the entries above simply refer to other files, which
1497 describe the given objects.
1498
1499 <sect2>The Configuration Files
1500
1501 <p>
1502 This section describes the syntax and use of the various tables which
1503 are used by the retrieval module.
1504
1505 The number of different file types may appear daunting at first, but
1506 each type corresponds fairly clearly to a single aspect of the Z39.50
1507 retrieval facilities. Further, the average database administrator,
1508 who is simply reusing an existing profile for which tables already
1509 exist, shouldn't have to worry too much about the contents of these tables.
1510
1511 Generally, the files are simple ASCII files, which can be maintained
1512 using any text editor. Blank lines, and lines beginning with a (&num;) are
1513 ignored. Any characters on a line followed by a (&num;) are also ignored.
1514 All other
1515 lines contain <it/directives/, which provide some setting or value
1516 to the system. Generally, settings are characterized by a single
1517 keyword, identifying the setting, followed by a number of parameters.
1518 Some settings are repeatable (r), while others may occur only once in a
1519 file. Some settings are optional (o), whicle others again are
1520 mandatory (m).
1521
1522 <sect2>The Abstract Syntax (.abs) Files
1523
1524 <p>
1525 The name of this file type is slightly misleading in Z39.50 terms,
1526 since, apart from the actual abstract syntax of the profile, it also
1527 includes most of the other definitions that go into a database
1528 profile.
1529
1530 When a record in the canonical, SGML-like format is read from a file
1531 or from the database, the first tag of the file should reference the
1532 profile that governs the layout of the record. If the first tag of the
1533 record is, say, <tt>&lt;gils&gt;</tt>, the system will look for the profile
1534 definition in the file <tt/gils.abs/. Profile definitions are cached,
1535 so they only have to be read once during the lifespan of the current
1536 process. 
1537
1538 When writing your own input filters, the <bf/record-begin/ command
1539 introduces the profile, and should always be called first thing when
1540 introducing a new record.
1541
1542 The file may contain the following directives:
1543
1544 <descrip>
1545 <tag>name <it/symbolic-name/</tag> (m) This provides a shorthand name or
1546 description for the profile. Mostly useful for diagnostic purposes.
1547
1548 <tag>reference <it/OID-name/</tag> (m) The reference name of the OID for
1549 the profile. The reference names can be found in the <bf/util/
1550 module of <bf/YAZ/.
1551
1552 <tag>attset <it/filename/</tag> (m) The attribute set that is used for
1553 indexing and searching records belonging to this profile.
1554
1555 <tag>tagset <it/filename/</tag> (o) The tag set (if any) that describe
1556 that fields of the records.
1557
1558 <tag>varset <it/filename/</tag> (o) The variant set used in the profile.
1559
1560 <tag>maptab <it/filename/</tag> (o,r) This points to a
1561 conversion table that might be used if the client asks for the record
1562 in a different schema from the native one.
1563
1564 <tag>marc <it/filename/</tag> (o) Points to a file containing parameters
1565 for representing the record contents in the ISO2709 syntax. Read the
1566 description of the MARC representation facility below.
1567
1568 <tag>esetname <it/name filename/</tag> (o,r) Associates the
1569 given element set name with an element selection file. If an (@) is
1570 given in place of the filename, this corresponds to a null mapping for
1571 the given element set name.
1572
1573 <tag>elm <it/path name attribute/</tag> (o,r) Adds an element
1574 to the abstract record syntax of the schema. The <it/path/ follows the
1575 syntax which is suggested by the Z39.50 document - that is, a sequence
1576 of tags separated by slashes (/). Each tag is given as a
1577 comma-separated pair of tag type and -value surrounded by parenthesis.
1578 The <it/name/ is the name of the element, and the <it/attribute/
1579 specifies what attribute to use when indexing the element. A ! in
1580 place of the attribute name is equivalent to specifying an attribute
1581 name identical to the element name. A - in place of the attribute name
1582 specifies that no indexing is to take place for the given element.
1583 </descrip>
1584
1585 <it>
1586 NOTE: The mechanism for controlling indexing is not adequate for
1587 complex databases, and will probably be moved into a separate
1588 configuration table eventually.
1589 </it>
1590
1591 The following is an excerpt from the abstract syntax file for the GILS
1592 profile.
1593
1594 <tscreen><verb>
1595 name gils
1596 reference GILS-schema
1597 attset gils.att
1598 tagset gils.tag
1599 varset var1.var
1600
1601 maptab gils-usmarc.map
1602
1603 # Element set names
1604
1605 esetname VARIANT gils-variant.est  # for WAIS-compliance
1606 esetname B gils-b.est
1607 esetname G gils-g.est
1608 esetname F @
1609
1610 elm (1,10)              rank                        -
1611 elm (1,12)              url                         -
1612 elm (1,14)              localControlNumber     Local-number
1613 elm (1,16)              dateOfLastModification Date/time-last-modified
1614 elm (2,1)               Title                       !
1615 elm (4,1)               controlIdentifier      Identifier-standard
1616 elm (2,6)               abstract               Abstract
1617 elm (4,51)              purpose                     !
1618 elm (4,52)              originator                  - 
1619 elm (4,53)              accessConstraints           !
1620 elm (4,54)              useConstraints              !
1621 elm (4,70)              availability                -
1622 elm (4,70)/(4,90)       distributor                 -
1623 elm (4,70)/(4,90)/(2,7) distributorName             !
1624 elm (4,70)/(4,90)/(2,10 distributorOrganization     !
1625 elm (4,70)/(4,90)/(4,2) distributorStreetAddress    !
1626 elm (4,70)/(4,90)/(4,3) distributorCity             !
1627 </verb></tscreen>
1628
1629 <sect2>The Attribute Set (.att) Files<label id="attset-files">
1630
1631 <p>
1632 This file type describes the <bf/Use/ elements of an attribute set.
1633 It contains the following directives. 
1634
1635 <descrip>
1636
1637 <tag>name <it/symbolic-name/</tag> (m) This provides a shorthand name or
1638 description for the attribute set. Mostly useful for diagnostic purposes.
1639
1640 <tag>reference <it/OID-name/</tag> (m) The reference name of the OID for
1641 the attribute set. The reference names can be found in the <bf/util/
1642 module of <bf/YAZ/.
1643
1644 <tag>ordinal <it/integer/</tag> (m) This value will be used to represent the
1645 attribute set in the index. Care should be taken that each attribute
1646 set has a unique ordinal value.
1647
1648 <tag>include <it/filename/</tag> (o,r) This directive is used to
1649 include another attribute set as a part of the current one. This is
1650 used when a new attribute set is defined as an extension to another
1651 set. For instance, many new attribute sets are defined as extensions
1652 to the <bf/bib-1/ set. This is an important feature of the retrieval
1653 system of Z39.50, as it ensures the highest possible level of
1654 interoperability, as those access points of your database which are
1655 derived from the external set (say, bib-1) can be used even by clients
1656 who are unaware of the new set.
1657
1658 <tag>att <it/att-value att-name &lsqb;local-value&rsqb;/</tag> (o,r) This
1659 repeatable directive introduces a new attribute to the set. The
1660 attribute value is stored in the index (unless a <it/local-value/ is
1661 given, in which case this is stored). The name is used to refer to the
1662 attribute from the <it/abstract syntax/. </descrip>
1663
1664 This is an excerpt from the GILS attribute set definition. Notice how
1665 the file describing the <it/bib-1/ attribute set is referenced.
1666
1667 <tscreen><verb>
1668 name gils
1669 reference GILS-attset
1670 include bib1.att
1671 ordinal 2
1672
1673 att 2001                distributorName
1674 att 2002                indexTermsControlled
1675 att 2003                purpose
1676 att 2004                accessConstraints
1677 att 2005                useConstraints
1678 </verb></tscreen>
1679
1680 <sect2>The Tag Set (.tag) Files
1681
1682 <p>
1683 This file type defines the tagset of the profile, possibly by
1684 referencing other tag sets (most tag sets, for instance, will include
1685 tagsetG and tagsetM from the Z39.50 specification. The file may
1686 contain the following directives.
1687
1688 <descrip>
1689 <tag>name <it/symbolic-name/</tag> (m) This provides a shorthand name or
1690 description for the tag set. Mostly useful for diagnostic purposes.
1691
1692 <tag>reference <it/OID-name/</tag> (o) The reference name of the OID for
1693 the tag set. The reference names can be found in the <bf/util/
1694 module of <bf/YAZ/. The directive is optional, since not all tag sets
1695 are registered outside of their schema.
1696
1697 <tag>type <it/integer/</tag> (m) The type number of the tag within the schema
1698 profile.
1699
1700 <tag>include <it/filename/</tag> (o,r) This directive is used
1701 to include the definitions of other tag sets into the current one.
1702
1703 <tag>tag <it/number names type/</tag> (o,r) Introduces a new
1704 tag to the set. The <it/number/ is the tag number as used in the protocol
1705 (there is currently no mechanism for specifying string tags at this
1706 point, but this would be quick work to add). The <it/names/ parameter
1707 is a list of names by which the tag should be recognized in the input
1708 file format. The names should be separated by slashes (/). The
1709 <it/type/ is th recommended datatype of the tag. It should be one of
1710 the following:
1711 <itemize>
1712 <item>structured
1713 <item>string
1714 <item>numeric
1715 <item>bool
1716 <item>oid
1717 <item>generalizedtime
1718 <item>intunit
1719 <item>int
1720 <item>octetstring
1721 <item>null
1722 </itemize>
1723 </descrip>
1724
1725 The following is an excerpt from the TagsetG definition file.
1726
1727 <tscreen><verb>
1728 name tagsetg
1729 reference TagsetG
1730 type 2
1731
1732 tag     1       title           string
1733 tag     2       author          string
1734 tag     3       publicationPlace string
1735 tag     4       publicationDate string
1736 tag     5       documentId      string
1737 tag     6       abstract        string
1738 tag     7       name            string
1739 tag     8       date            generalizedtime
1740 tag     9       bodyOfDisplay   string
1741 tag     10      organization    string
1742 </verb></tscreen>
1743
1744 <sect2>The Variant Set (.var) Files<label id="variant-set">
1745
1746 <p>
1747 The variant set file is a straightforward representation of the
1748 variant set definitions associated with the protocol. At present, only
1749 the <it/Variant-1/ set is known.
1750
1751 These are the directives allowed in the file.
1752
1753 <descrip>
1754 <tag>name <it/symbolic-name/</tag> (m) This provides a shorthand name or
1755 description for the variant set. Mostly useful for diagnostic purposes.
1756
1757 <tag>reference <it/OID-name/</tag> (o) The reference name of the OID for
1758 the variant set, if one is required. The reference names can be found
1759 in the <bf/util/ module of <bf/YAZ/.
1760
1761 <tag>class <it/integer class-name/</tag> (m,r) Introduces a new
1762 class to the variant set.
1763
1764 <tag>type <it/integer type-name datatype/</tag> (m,r) Addes a
1765 new type to the current class (the one introduced by the most recent
1766 <bf/class/ directive). The type names belong to the same name space as
1767 the one used in the tag set definition file.
1768 </descrip>
1769
1770 The following is an excerpt from the file describing the variant set
1771 <it/Variant-1/.
1772
1773 <tscreen><verb>
1774 name variant-1
1775 reference Variant-1
1776
1777 class 1 variantId
1778
1779   type  1       variantId               octetstring
1780
1781 class 2 body
1782
1783   type  1       iana                    string
1784   type  2       z39.50                  string
1785   type  3       other                   string
1786 </verb></tscreen>
1787
1788 <sect2>The Element Set (.est) Files
1789
1790 <p>
1791 The element set specification files describe a selection of a subset
1792 of the elements of a database record. The element selection mechanism
1793 is equivalent to the one supplied by the <it/Espec-1/ syntax of the
1794 Z39.50 specification. In fact, the internal representation of an
1795 element set specification is identical to the <it/Espec-1/ structure,
1796 and we'll refer you to the description of that structure for most of
1797 the detailed semantics of the directives below.
1798
1799 <it>
1800 NOTE: Not all of the Espec-1 functionality has been implemented yet.
1801 The fields that are mentioned below all work as expected, unless
1802 otherwise is noted.
1803 </it>
1804
1805 The directives available in the element set file are as follows:
1806
1807 <descrip>
1808 <tag>defaultVariantSetId <it/OID-name/</tag> (o) If variants are used in
1809 the following, this should provide the name of the variantset used
1810 (it's not currently possible to specify a different set in the
1811 individual variant request). In almost all cases (certainly all
1812 profiles known to us), the name <tt/Variant-1/ should be given here.
1813
1814 <tag>defaultVariantRequest <it/variant-request/</tag> (o) This directive
1815 provides a default variant request for
1816 use when the individual element requests (see below) do not contain a
1817 variant request. Variant requests consist of a blank-separated list of
1818 variant components. A variant compont is a comma-separated,
1819 parenthesized triple of variant class, type, and value (the two former
1820 values being represented as integers). The value can currently only be
1821 entered as a string (this will change to depend on the definition of
1822 the variant in question). The special value (@) is interpreted as a
1823 null value, however.
1824
1825 <tag>simpleElement <it/path &lsqb;'variant' variant-request&rsqb;/</tag>
1826 (o,r) This corresponds to a simple element request in <it/Espec-1/. The
1827 path consists of a sequence of tag-selectors, where each of these can
1828 consist of either:
1829
1830 <itemize>
1831 <item>A simple tag, consisting of a comma-separated type-value pair in
1832 parenthesis, possibly followed by a colon (:) followed by an
1833 occurrences-specification (see below). The tag-value can be a number
1834 or a string. If the first character is an apostrophe ('), this forces
1835 the value to be interpreted as a string, even if it appears to be numerical.
1836
1837 <item>A WildThing, represented as a question mark (?), possibly
1838 followed by a colon (:) followed by an occurrences specification (see
1839 below).
1840
1841 <item>A WildPath, represented as an asterisk (*). Note that the last
1842 element of the path should not be a wildPath (wildpaths don't work in
1843 this version).
1844 </itemize>
1845
1846 The occurrences-specification can be either the string <tt/all/, the
1847 string <tt/last/, or an explicit value-range. The value-range is
1848 represented as an integer (the starting point), possibly followed by a
1849 plus (+) and a second integer (the number of elements, default being
1850 one).
1851
1852 The variant-request has the same syntax as the defaultVariantRequest
1853 above. Note that it may sometimes be useful to give an empty variant
1854 request, simply to disable the default for a specific set of fields
1855 (we aren't certain if this is proper <it/Espec-1/, but it works in
1856 this implementation).
1857 </descrip>
1858
1859 The following is an example of an element specification belonging to
1860 the GILS profile.
1861
1862 <tscreen><verb>
1863 simpleelement (1,10)
1864 simpleelement (1,12)
1865 simpleelement (2,1)
1866 simpleelement (1,14)
1867 simpleelement (4,1)
1868 simpleelement (4,52)
1869 </verb></tscreen>
1870
1871 <sect2>The Schema Mapping (.map) Files<label id="schema-mapping">
1872
1873 <p>
1874 Sometimes, the client might want to receive a database record in
1875 a schema that differs from the native schema of the record. For
1876 instance, a client might only know how to process WAIS records, while
1877 the database record is represented in a more specific schema, such as
1878 GILS. In this module, a mapping of data to one of the MARC formats is
1879 also thought of as a schema mapping (mapping the elements of the
1880 record into fields consistent with the given MARC specification, prior
1881 to actually converting the data to the ISO2709). This use of the
1882 object identifier for USMARC as a schema identifier represents an
1883 overloading of the OID which might not be entirely proper. However,
1884 it represents the dual role of schema and record syntax which
1885 is assumed by the MARC family in Z39.50.
1886
1887 <it>
1888 NOTE: The schema-mapping functions are so far limited to a
1889 straightforward mapping of elements. This should be extended with
1890 mechanisms for conversions of the element contents, and conditional
1891 mappings of elements based on the record contents.
1892 </it>
1893
1894 These are the directives of the schema mapping file format:
1895
1896 <descrip>
1897 <tag>targetName <it/name/</tag> (m) A symbolic name for the target schema
1898 of the table. Useful mostly for diagnostic purposes.
1899
1900 <tag>targetRef <it/OID-name/</tag> (m) An OID name for the target schema.
1901 This is used, for instance, by a server receiving a request to present
1902 a record in a different schema from the native one. The name, again,
1903 is found in the <bf/oid/ module of <bf/YAZ/.
1904
1905 <tag>map <it/element-name target-path/</tag> (o,r) Adds
1906 an element mapping rule to the table.
1907 </descrip>
1908
1909 <sect2>The MARC (ISO2709) Representation (.mar) Files
1910
1911 <p>
1912 This file provides rules for representing a record in the ISO2709
1913 format. The rules pertain mostly to the values of the constant-length
1914 header of the record.
1915
1916 <it>NOTE: This will be described better. We're in the process of
1917 re-evaluating and most likely changing the way that MARC records are
1918 handled by the system.</it>
1919
1920 <sect1>Exchange Formats
1921
1922 <p>
1923 Converting records from the internal structure to en exchange format
1924 is largely an automatic process. Currently, the following exchange
1925 formats are supported:
1926
1927 <itemize>
1928 <item>GRS-1. The internal representation is based on GRS-1, so the
1929 conversion here is straightforward. The system will create
1930 applied variant and supported variant lists as required, if a record
1931 contains variant information.
1932
1933 <item>SUTRS. Again, the mapping is fairly straighforward. Indentation
1934 is used to show the hierarchical structure of the record.
1935
1936 <item>ISO2709-based formats (USMARC, etc.). Only records with a
1937 two-level structure (corresponding to fields and subfields) can be
1938 directly mapped to ISO2709. For records with a different structuring
1939 (eg., GILS), the representation in a structure like USMARC involves a
1940 schema-mapping (see section <ref id="schema-mapping" name="Schema
1941 Mapping">), to an &dquot;implied&dquot; USMARC schema (implied,
1942 because there is no formal schema which specifies the use of the
1943 USMARC fields outside of ISO2709). The resultant, two-level record is
1944 then mapped directly from the internal representation to ISO2709. See
1945 the GILS schema definition files for a detailed example of this
1946 approach.
1947
1948 <item>Explain. This representation is only available for records
1949 belonging to the Explain schema.
1950
1951 </itemize>
1952
1953 <sect>License
1954
1955 <p>
1956 Copyright &copy; 1995,1996 Index Data.
1957
1958 All rights reserved.
1959
1960 Use and redistribution in source or binary form, with or without
1961 modification, of any or all of this software and documentation is
1962 permitted, provided that the following conditions are met:
1963
1964 1. This copyright and permission notice appear with all copies of the
1965 software and its documentation. Notices of copyright or attribution
1966 which appear at the beginning of any file must remain unchanged.
1967
1968 2. The names of Index Data or the individual authors may not be used to
1969 endorse or promote products derived from this software without specific
1970 prior written permission.
1971
1972 3. Source code or binary versions of this software and its
1973 documentation may be used freely in not-for-profit applications. For
1974 profit applications - such as providing for-pay database services,
1975 marketing a product based in whole or in part on this software or its
1976 documentation, or generally distributing this software or its
1977 documentation under a different license - requires a commercial
1978 license from Index Data. The software may be installed and used for
1979 evaluation purposes in conjunction with a commercial application for a
1980 trial period of no more than 60 days.
1981
1982 THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
1983 EXPRESS, IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
1984 WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1985 IN NO EVENT SHALL INDEX DATA BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
1986 INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
1987 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
1988 NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
1989 LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
1990 OF THIS SOFTWARE.
1991
1992 <sect>About Index Data and the Zebra Server
1993
1994 <p>
1995 Index Data is a consulting and software-development enterprise that
1996 specialises in library and information management systems. Our
1997 interests and expertise span a broad range of related fields, and one
1998 of our primary, long-term objectives is the development of a powerful
1999 information management
2000 system with open network interfaces and hypermedia capabilities.
2001
2002 We make this software available free of charge for not-for-profit
2003 purposes, as a service to the networking community, and to further
2004 the development and use of quality software for open network
2005 communication.
2006
2007 If you like this software, and would like to use all or part of it in
2008 a commercial product, or to provide a commercial database service,
2009 please contact us to discuss the details. We'll be happy to answer
2010 questions about the software, and about our services in general. If
2011 you have specific requirements to the software, we'll be glad to offer
2012 our advice - and if you need to adapt the software to a special
2013 purpose, our consulting services and expert knowledge of the software
2014 is available to you at favorable rates.
2015
2016 <tscreen>
2017 Index Data&nl
2018 Ryesgade 3&nl
2019 DK-2200 K&oslash;benhavn N&nl
2020 </tscreen>
2021
2022 <p>
2023 <tscreen><verb>
2024 Phone: +45 3536 3672
2025 Fax  : +45 3536 0449
2026 Email: info@index.ping.dk
2027 </verb></tscreen>
2028
2029 The <it>Random House College Dictionary</it>, 1975 edition
2030 offers this definition of the 
2031 word &dquot;Zebra&dquot;:
2032
2033 <it>
2034 Zebra, n., any of several horselike, African mammals of the genus Equus,
2035 having a characteristic pattern of black or dark-brown stripes on
2036 a whitish background.
2037 </it>
2038
2039 </article>