SO

Apache Solr Reference Guide

Covering Apache Solr 5.5

Li censed to the Apache Software Foundati on (ASF) under one
or nore contributor |icense agreenments. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You nay obtain a copy of the License at

http://ww. apache. org/li censes/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing,
software distributed under the License is distributed on an
"AS |S" BASI S, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing perm ssions and linmtations
under the License.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation. Apache Lucene, Apache
Solr and their respective logos are trademarks of the Apache Software Foundation. Please see the Apache
Trademark Policy for more information.

Fonts used in the Apache Solr Reference Guide include Raleway, licensed under the SIL Open Font License, 1.1.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/foundation/marks/
http://www.apache.org/foundation/marks/
https://www.theleagueofmoveabletype.com/raleway
http://scripts.sil.org/OFL

Apache Solr Reference Guide

This reference guide describes Apache Solr, the open source solution for search. You can download Apache
Solr from the Solr website at http://lucene.apache.org/solr/.

This Guide contains the following sections:

Getting Started: This section guides you through the installation and setup of Solr.

Using the Solr Administration User Interface: This section introduces the Solr Web-based user interface.
From your browser you can view configuration files, submit queries, view logfile settings and Java environment
settings, and monitor and control distributed configurations.

Documents, Fields, and Schema Design: This section describes how Solr organizes its data for indexing. It
explains how a Solr schema defines the fields and field types which Solr uses to organize data within the
document files it indexes.

Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares text for indexing
and searching. Analyzers parse text and produce a stream of tokens, lexical units used for indexing and
searching. Tokenizers break field data down into tokens. Filters perform other transformational or selective work
on token streams.

Indexing and Basic Data Operations: This section describes the indexing process and basic index operations,
such as commit, optimize, and rollback.

Searching: This section presents an overview of the search process in Solr. It describes the main components
used in searches, including request handlers, query parsers, and response writers. It lists the query parameters
that can be passed to Solr, and it describes features such as boosting and faceting, which can be used to
fine-tune search results.

The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It begins with an
overview of the sol r confi g. xm file, then tells you how to configure cores with sol r. xm , how to configure
the Lucene index writer, and more.

Managing Solr: This section discusses important topics for running and monitoring Solr. Other topics include
how to back up a Solr instance, and how to run Solr with Java Management Extensions (JMX).

SolrCloud: This section describes the newest and most exciting of Solr's new features, SolrCloud, which
provides comprehensive distributed capabilities.

Legacy Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a large index
into sections called shards, which are then distributed across multiple servers, or by replicating a single index
across multiple services.

Client APIs: This section tells you how to access Solr through various client APIs, including JavaScript, JSON,
and Ruby.

Apache Solr Reference Guide 5.5 2

http://lucene.apache.org/solr/

About This Guide

This guide describes all of the important features and functions of Apache Solr. It is free to download from http://|
ucene.apache.org/solr/.

Designed to provide high-level documentation, this guide is intended to be more encyclopedic and less of a
cookbook. It is structured to address a broad spectrum of needs, ranging from new developers getting started to
well-experienced developers extending their application or troubleshooting. It will be of use at any point in the
application life cycle, for whenever you need authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that you can read
XML. It does not assume that you are a Java programmer, although knowledge of Java is helpful when working
directly with Lucene or when developing custom extensions to a Lucene/Solr installation.

Special Inline Notes
Special notes are included throughout these pages.

Note Type Look & Description

Information) . . .
() Notes with a blue background are used for information that is important for you to know.

Notes
1. Yellow notes are further clarifications of important points to keep in mind while using
Solr.
Tip : .
@ Notes with a green background are Helpful Tips.
Warning

G) Notes with a red background are warning messages.

Hosts and Port Examples

The default port when running Solr is 8983. The samples, URLs and screenshots in this guide may show
different ports, because the port number that Solr uses is configurable. If you have not customized your
installation of Solr, please make sure that you use port 8983 when following the examples, or configure your own
installation to use the port numbers shown in the examples. For information about configuring port numbers, see
Managing Solr.

Similarly, URL examples use 'localhost' throughout; if you are accessing Solr from a location remote to the server
hosting Solr, replace 'localhost’ with the proper domain or IP where Solr is running.

Paths

Path information is given relative to sol r . home, which is the location under the main Solr installation where
Solr's collections and their conf and dat a directories are stored. When running the various examples

Apache Solr Reference Guide 5.5 3

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

mentioned through out this tutorial (i.e., bi n/ sol r -e techproducts) the sol r. home will be a sub directory
of exanpl e/ created for you automatically.

Apache Solr Reference Guide 5.5 4

Getting Started

Solr makes it easy for programmers to develop sophisticated, high-performance search applications with
advanced features such as faceting (arranging search results in columns with numerical counts of key terms).
Solr builds on another open source search technology: Lucene, a Java library that provides indexing and search
technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities. Both Solr
and Lucene are managed by the Apache Software Foundation (www.apache.org).

The Lucene search library currently ranks among the top 15 open source projects and is one of the top 5 Apache
projects, with installations at over 4,000 companies. Lucene/Solr downloads have grown nearly ten times over
the past three years, with a current run-rate of over 6,000 downloads a day. The Solr search server, which
provides application builders a ready-to-use search platform on top of the Lucene search library, is the fastest
growing Lucene sub-project. Apache Lucene/Solr offers an attractive alternative to the proprietary licensed
search and discovery software vendors.

This section helps you get Solr up and running quickly, and introduces you to the basic Solr architecture and
features. It covers the following topics:

Installing Solr: A walkthrough of the Solr installation process.

Running Solr: An introduction to running Solr. Includes information on starting up the servers, adding documents,
and running queries.

A Quick Overview: A high-level overview of how Solr works.
A Step Closer: An introduction to Solr's home directory and configuration options.

Solr Start Script Reference: a complete reference of all of the commands and options available with the bin/solr
script.

Installing Solr

This section describes how to install Solr. You can install Solr in any system where a suitable Java Runtime
Environment (JRE) is available, as detailed below. Currently this includes Linux, OS X, and Microsoft Windows.
The instructions in this section should work for any platform, with a few exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.7 or higher. At a command line, check your Java
version like this:

$ java -version

java version "1.8.0_60"

Java(TM SE Runtime Environnent (build 1.8.0_60-b27)

Java Hot Spot (TM 64-Bit Server VM (build 25.60-b23, m xed node)

The exact output will vary, but you need to make sure you meet the minimum version requirement. We also
recommend choosing a version that is not end-of-life from its vendor. If you don't have the required version, or if
the java command is not found, download and install the latest version from Oracle at http://www.oracle.com/tec
hnetwork/java/javase/downloads/index.html.

Installing Solr

Apache Solr Reference Guide 5.5 5

http://www.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Solr is available from the Solr website at http://lucene.apache.org/solr/.

For Linux/Unix/OSX systems, download the . t gz file. For Microsoft Windows systems, download the . zi p file.
When getting started, all you need to do is extract the Solr distribution archive to a directory of your choosing.
When you're ready to setup Solr for a production environment, please refer to the instructions provided on the Ta
king Solr to Production page. To keep things simple for now, extract the Solr distribution archive to your local
home directory, for instance on Linux, do:

$ cd ~/
$ tar zxf solr-5.0.0.tgz

Once extracted, you are now ready to run Solr using the instructions provided in the Running Solr section.

Running Solr

This section describes how to run Solr with an example schema, how to add documents, and how to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running bi n/ sol r from the Solr directory.
$ bin/solr start

If you are running Windows, you can start Solr by running bi n\ sol r. cnd instead.
bin\solr.cnd start

This will start Solr in the background, listening on port 8983.

When you start Solr in the background, the script will wait to make sure Solr starts correctly before returning to
the command line prompt.

The bi n/ sol r and bi n\ sol r. cnd scripts allow you to customize how you start Solr. Let's work through a few
examples of using the bi n/ sol r script (if you're running Solr on Windows, the bi n\ sol r. cnd works the same
as what is shown in the examples below):

Solr Script Options

The bi n/ sol r script has several options.

Script Help

To see how to use the bi n/ sol r script, execute:

$ bin/solr -help

For specific usage instructions for the start command, do:

$ bin/solr start -help

Apache Solr Reference Guide 5.5 6

http://lucene.apache.org/solr/

Start Solr in the Foreground

Since Solr is a server, it is more common to run it in the background, especially on Unix/Linux. However, to start
Solr in the foreground, simply do:

$ bin/solr start -f

If you are running Windows, you can run:

bin\solr.cnd start -f

Start Solr with a Different Port

To change the port Solr listens on, you can use the - p parameter when starting, such as:

$ bin/solr start -p 8984

Stop Solr

When running Solr in the foreground (using -f), then you can stop it using Ct r | - c. However, when running in the
background, you should use the stop command, such as:

$ bin/solr stop -p 8983

The stop command requires you to specify the port Solr is listening on or you can use the - al | parameter to
stop all running Solr instances.

Start Solr with a Specific Example Configuration

Solr also provides a number of useful examples to help you learn about key features. You can launch the
examples using the - e flag. For instance, to launch the "techproducts” example, you would do:

$ bin/solr -e techproducts

Currently, the available examples you can run are: techproducts, dih, schemaless, and cloud. See the section Ru
nning with Example Configurations for details on each example.

() Getting Started with SolrCloud
Running the ¢l oud example starts Solr in SolrCloud mode. For more information on starting Solr in
cloud mode, see the section Getting Started with SolrCloud.

Check if Solr is Running
If you're not sure if Solr is running locally, you can use the status command:

$ bin/solr status

This will search for running Solr instances on your computer and then gather basic information about them, such
as the version and memory usage.

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

Apache Solr Reference Guide 5.5 7

https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference#SolrStartScriptReference-RunningwithExampleConfigurations
https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference#SolrStartScriptReference-RunningwithExampleConfigurations

http://1l ocal host: 8983/ sol r/

E ; LI"",’# = Instance System o
o prnsesse Physical Memory
& Dashboard =1 Versions

() Logging " solr-spec 5.0.0

F . solr-impl 5.0.0-SNAPSHOT 1650195 - anshumgupta - 2015-01-09 13:41:02
2F Core Admin Swap Space
7 lucene-spec 5.0.0
Java Properties
lucene-impl 5.0.0-SNAPSHOT 1650195 - anshumgupta - 2015-01-07 15:00:12
Thread Dump
- File Descriptor Count
_ JVM 8 JVM-Memory
" Runtime Oracle Corporation Java HotSpot(TM) 64-Bit Server VM (1.8.0_20 25.20-b23)
[Processors 8
& Args -DSTOP.KEY=solrrocks

-Djava.net.preferlPv4Stack=true

-Dlogaj.confi jon=file:/Users/ workspace/branch_5x/solr/example/...
-Dsolr.solr.home=/Users/anshumgupta/workspace/branch_5x/solr/example/techpro...

-XX:+CMSParallelRemarkEnabled

-XX:+ParallelRefProcEnabled

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your port number
and try again.

Create a Core

If you did not start Solr with an example configuration, you would need to create a core in order to be able to
index and search. You can do so by running:

$ bin/solr create -c <name>
This will create a core that uses a data-driven schema which tries to guess the correct field type when you add
documents to the index.

To see all available options for creating a new core, execute:

$ bin/solr create -help

Add Documents

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is structured
(more on the schema later), but without documents there is nothing to find. Solr needs input before it can do
much.

You may want to add a few sample documents before trying to index your own content. The Solr installation
comes with different types of example documents located under the sub-directories of the exanpl e/ directory of
your installation.

In the bi n/ directory is the post script, a command line tool which can be used to index different types of

Apache Solr Reference Guide 5.5 8

documents. Do not worry too much about the details for now. The Indexing and Basic Data Operations section
has all the details on indexing.

To see some information about the usage of bi n/ post, use the - hel p option. Windows users, see the section
for Post Tool on Windows.

bi n/ post can post various types of content to Solr, including files in Solr's native XML and JSON formats, CSV
files, a directory tree of rich documents, or even a simple short web crawl. See the examples at the end of
“bin/post -help” for various commands to easily get started posting your content into Solr.

Go ahead and add all the documents in some example XML files:

$ bin/post -c gettingstarted exanpl e/ exanpl edocs/*. xmi

Si npl ePost Tool version 5.0.0

Posting files to [base] url http://1ocal host: 8983/ solr/gettingstarted/ update...
Entering auto node. File endings considered are

xm , j son, csv, pdf, doc, docx, ppt, ppt X, x| s, xl sx, odt, odp, ods, ott,otp,ots,rtf, htmhtnm,txt
, 1 og

POSTi ng file gb18030-exanpl e.xm (application/xm) to [base]

POSTing file hd.xm (application/xm) to [base]

POSTing file ipod other.xm (application/xm) to [base]

POSTing file ipod_video.xm (application/xm) to [base]

POSTing file manufacturers.xm (application/xm) to [base]

POSTing file mem xm (application/xm) to [base]

POSTing file noney.xm (application/xm) to [base]

PGSTing file nmonitor.xm (application/xm) to [base]

POSTing file nonitor2.xm (application/xm) to [base]

POSTing file nmp500.xm (application/xm) to [base]

POSTing file sd500.xm (application/xm) to [base]

POSTing file solr.xm (application/xm) to [base]

POSTing file utf8-exanple.xm (application/xm) to [base]

POSTing file vidcard.xm (application/xm) to [base]

14 files indexed.

COW Tting Solr index changes to http://|ocal host:8983/sol r/gettingstarted/ update. ..
Ti me spent: 0:00: 00. 153

That's it! Solr has indexed the documents contained in those files.

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a URL that
includes the query parameters. This is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video":
http://l ocal host: 8983/solr/gettingstarted/sel ect ?g=vi deo

Notice how the URL includes the host name (I ocal host), the port number where the server is listening (8983),
the application name (sol r), the request handler for queries (sel ect), and finally, the query itself (q=vi deo).

The results are contained in an XML document, which you can examine directly by clicking on the link above.
The document contains two parts. The first part is the r esponseHeader , which contains information about the
response itself. The main part of the reply is in the result tag, which contains one or more doc tags, each of
which contains fields from documents that match the query. You can use standard XML transformation
techniques to mold Solr's results into a form that is suitable for displaying to users. Alternatively, Solr can output
the results in JSON, PHP, Ruby and even user-defined formats.

Just in case you are not running Solr as you read, the following screen shot shows the result of a query (the next
example, actually) as viewed in Mozilla Firefox. The top-level response contains a | st named r esponseHeade

Apache Solr Reference Guide 5.5 9

https://cwiki.apache.org/confluence/display/solr/Post+Tool#PostTool-Windows

r and a result named response. Inside result, you can see the three docs that represent the search results.

e®no Mozilla Firefox
J. . hup:/ flocalhost... /select?g=video HTl -
|. localhost:8983 (solrfselect?’g=video v C'] (_"‘l' GoogQ) @

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <response>
— <Ist name="responscHeader">
<int name="status">0</int>
<int name="QTime">0</int>
— <Ist name="params">
<str name="q">video</str>
</Ist>
</Ist>
— <result name="response" numFound="3" start="0">
- <doc>
— <arr name="cat">
<str>electronics</str>
<str>music</str>
</arr>
— <arr name="features">
<str=iTunes, Podcasts, Audiobooks</str>
— <str>
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video
</str>
— <str>
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str=>Up to 20 hours of battery life</str>
— <str>
Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video
</str>
— <str>
Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback, Upgradeable
firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication
</str>
</arr>
<str name="id">MA147LL/A</str>
<bool name="inStock">true</bool>
<str name="includes">earbud headphones, USB cable</str>
<str name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>
<str name="name">Apple 60 GB iPod with Video Playback Black</str>
<int name="popularity">10</int>
<float name="price">399 O</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">5.5</float>
</doc>

*-ﬂdﬂhww PR P R ST e Ny B PV s

-
U

An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the query syntax.
This one is the same as before but the results only contain the ID, name, and price for each returned document.
If you don't specify which fields you want, all of them are returned.

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2q=vi deo&f| =i d, nane, pri ce

Here is another example which searches for "black" in the nane field only. If you do not tell Solr which field to
search, it will search default fields, as specified in the schema.

http://1 ocal host: 8983/ sol r/ gettingstarted/sel ect ?g=nane: bl ack

You can provide ranges for fields. The following query finds every document whose price is between $0 and
$400.

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2q=price: [0%20TO¥%20400] & | =i d, name

Apache Solr Reference Guide 5.5 10

, price

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that are
meaningful to your application. For example, a shopping site could provide facets to narrow search results by
manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this power, take a look
at the following query. It adds f acet =true and f acet . fi el d=cat.

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2q=price: [0%20TO¥20400] & | =i d, nanme
, priceé&f acet =trueé&f acet.fiel d=cat

In addition to the familiar r esponseHeader and response from Solr, a f acet _count s element is also present.
Here is a view with the r esponseHeader and response collapsed so you can see the faceting information
clearly.

An XML Response with faceting

<response>
<l st nanme="responseHeader" >
</|st>
<result nane="response" nunfFound="9" start="0">
<doc>
<str nanme="id">SOLR1000</str>

<str name="nane">Solr, the Enterprise Search Server</str>
<fl oat nane="price">0.0</fl oat ></ doc>

</result>
<l st nanme="facet counts">
<l st nane="facet_queries"/>
<l st nanme="facet_fields">
<l st nane="cat">
<int name="el ectroni cs">6</int>
<int name="nenory">3</int>
<int name="search">2</int>
<int name="sof tware">2</int>
<i nt name="canera">1</int>
<int name="copi er">1</int>
<int name="nul tifunction printer">1</int>
<int name="rmnusi c">1</int>
<int name="printer">1</int>
<i nt name="scanner">1</int>
<i nt name="connector">0</int>
<int name="currency">0</int>
<i nt name="graphi cs card">0</int>
<int name="hard drive">0</int>
<int name="nonitor">0</int>
</l|st>
</|st>
<l st nanme="facet_dates"/>
<l st name="facet_ranges"/>
</l|st>
</ response>

The facet information shows how many of the query results have each possible value of the cat field. You could
easily use this information to provide users with a quick way to narrow their query results. You can filter results
by adding one or more filter queries to the Solr request. Here is a request further constraining the request to
documents with a category of "software".

Apache Solr Reference Guide 5.5 11

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2qg=pri ce: 0%20TO¥20400&f | =i d, nane, p
ri ce&f acet =trueé&f acet.fiel d=cat & gq=cat: sof t ware

A Quick Overview

Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a example of how Solr might be integrated into an application:

>
Content Dat
Management “—> S ata
System ource

i"[)‘ End User

SOLr’ | Application

In the scenario above, Solr runs along side other server applications. For example, an online store application
would provide a user interface, a shopping cart, and a way to make purchases for end users; while an inventory
management application would allow store employees to edit product information. The product metadata would
be kept in some kind of database, as well as in Solr.

Solr makes it easy to add the capability to search through the online store through the following steps:

1. Define a schema. The schema tells Solr about the contents of documents it will be indexing. In the online
store example, the schema would define fields for the product name, description, price, manufacturer, and
so on. Solr's schema is powerful and flexible and allows you to tailor Solr's behavior to your application.
See Documents, Fields, and Schema Design for all the details.

2. Deploy Solr to your application server.

3. Feed Solr the document for which your users will search.

4. Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which means, in
essence, that a query is a simple HTTP request URL and the response is a structured document: mainly XML,
but it could also be JSON, CSV, or some other format. This means that a wide variety of clients will be able to
use Solr, from other web applications to browser clients, rich client applications, and mobile devices. Any
platform capable of HTTP can talk to Solr. See Client APIs for details on client APIs.

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr offers support

Apache Solr Reference Guide 5.5 12

for the simplest keyword searching through to complex queries on multiple fields and faceted search results. Sea
rching has more information about searching and queries.

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications should do the
trick.

A relatively common scenario is that you have so much data, or so many queries, that a single Solr server is
unable to handle your entire workload. In this case, you can scale up the capabilities of your application using So
IrCloud to better distribute the data, and the processing of requests, across many servers. Multiple options can
be mixed and matched depending on the type of scalability you need.

For example: "Sharding" is a scaling technique in which a collection is split into multiple logical pieces called
"shards" in order to scale up the number of documents in a collection beyond what could physically fit on a single
server. Incoming queries are distributed to every shard in the collection, which respond with merged results.
Another technigue available is to increase the "Replication Factor" of your collection, which allows you to add
servers with additional copies of your collection to handle higher concurrent query load by spreading the
requests around to multiple machines. Sharding and Replication are not mutually exclusive, and together make
Solr an extremely powerful and scalable platform.

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous Internet sites that
use Solr today are Macy's, EBay, and Zappo's.

For more information, take a look at https://wiki.apache.org/solr/PublicServers.

A Step Closer

You already have some idea of Solr's schema. This section describes Solr's home directory and other
configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory contains
important configuration information and is the place where Solr will store its index. The layout of the home
directory will look a little different when you are running Solr in standalone mode vs when you are running in
SolrCloud mode.

The crucial parts of the Solr home directory are shown in these examples:

Standalone Mode

<sol r - honme-di rect ory>/
sol r. xm
core_nanel/
core.properties
conf/
sol rconfig. xm
schema. xmi
dat a/
core_nane2/
core.properties
conf/
sol rconfig. xm
schema. xm
dat a/

Apache Solr Reference Guide 5.5 13

https://wiki.apache.org/solr/PublicServers

SolrCloud Mode

<sol r - honme-di rectory>/
sol r. xm
core_nanel/
core.properties
dat a/
core_nane2/
core.properties
dat a/

You may see other files, but the main ones you need to know are:

® sol r. xm specifies configuration options for your Solr server instance. For more information on sol r. xm
| see Solr Cores and solr.xml.
® Per Solr Core:
® core. properti es defines specific properties for each core such as its name, the collection the
core belongs to, the location of the schema, and other parameters. For more details on cor e. pro
perti es, see the section Defining core.properties.
® solrconfig. xm controls high-level behavior. You can, for example, specify an alternate location
for the data directory. For more information on sol r conf i g. xm , see Configuring solrconfig.xml.
® schema. xm (or managed- schena instead) describes the documents you will ask Solr to index.
Inside schema. xni , you define a document as a collection of fields. You get to define both the
field types and the fields themselves. Field type definitions are powerful and include information
about how Solr processes incoming field values and query values. For more information on schem
a. xm , see Documents, Fields, and Schema Design. If you are using Solr's Schema API to
manage your fields, you would see managed- schena instead of schema. xnl (see Managed
Schema Definition in SolrConfig for more information).
® dat a/ The directory containing the low level index files.

Note that the SolrCloud example does not include a conf directory for each Solr Core (so there is no sol r conf
i g. xm orschena. xnl). This is because the configuration files usually found in the conf directory are stored
in ZooKeeper so they can be propagated across the cluster.

If you are using SolrCloud with the embedded ZooKeeper instance, you may also see zoo. cf g and zoo. dat a
which are ZooKeeper configuration and data files. However, if you are running your own ZooKeeper ensemble,
you would supply your own ZooKeeper configuration file when you start it and the copies in Solr would be
unused. For more information about ZooKeeper and SolrCloud, see the section SolrCloud.

Solr Start Script Reference

Solr includes a script known as "bi n/ sol r " that allows you to start and stop Solr, create and delete collections
or cores, and check the status of Solr and configured shards. You can find the script in the bi n/ directory of your
Solr installation. The bi n/ sol r script makes Solr easier to work with by providing simple commands and
options to quickly accomplish common goals.

In this section, the headings below correspond to available commands. For each command, the available options
are described with examples.

More examples of bin/solr in use are available throughout the Solr Reference Guide, but particularly in the
sections Running Solr and Getting Started with SolrCloud.

Apache Solr Reference Guide 5.5 14

® Starting and Stopping
® Start and Restart
® Stop
® |nformational
® Version
® Status
® Healthcheck
® Collections and Cores
®* Create
® Delete
® ZooKeeper Operations
® Uploading a Configuration Set
® Downloading a Configuration Set

Starting and Stopping

Start and Restart

The start command starts Solr. The restart command allows you to restart Solr while it is already running or if it
has been stopped already.

The start and restart commands have several options to allow you to run in SolrCloud mode, use an example
configuration set, start with a hostname or port that is not the default and point to a local ZooKeeper ensembile.

bin/solr start [options]
bin/solr start -help
bin/solr restart [options]
bin/solr restart -help

When using the restart command, you must pass all of the parameters you initially passed when you started
Solr. Behind the scenes, a stop request is initiated, so Solr will be stopped before being started again. If no
nodes are already running, restart will skip the step to stop and proceed to starting Solr.

Available Parameters

The bin/solr script provides many options to allow you to customize the server in common ways, such as
changing the listening port. However, most of the defaults are adequate for most Solr installations, especially
when just getting started.

Parameter Description Example
-a "<string>" Start Solr with additional JVM bin/solr start -a
parameters, such as those starting with " - Xdebug - Xrunj dwp: t ransport =dt _socket,

-X. If you are passing JVM parameters server =y, suspend=n, addr ess=1044"
that begin with "-D", you can omit the -a
option.

Apache Solr Reference Guide 5.5 15

-cloud

-d <dir>

-e <name>

-h
<hostname>

-m
<memory>

Start Solr in SolrCloud mode, which will
also launch the embedded ZooKeeper
instance included with Solr.

This option can be shortened to simply
- C.

If you are already running a ZooKeeper
ensemble that you want to use instead
of the embedded (single-node)
ZooKeeper, you should also pass the -z
parameter.

For more details, see the section SolrCl
oud Mode below.

Define a server directory, defaults to se
rver (asin, $SOLR_HOVE/ server). It
is uncommon to override this option.
When running multiple instances of Solr
on the same host, it is more common to
use the same server directory for each
instance and use a unique Solr home
directory using the -s option.

Start Solr with an example
configuration. These examples are
provided to help you get started faster
with Solr generally, or just try a specific
feature.

The available options are:

cloud
techproducts
dih
schemaless

See the section Running with Example
Configurations below for more details
on the example configurations.

Start Solr in the foreground; you cannot
use this option when running examples
with the -e option.

Start Solr with the defined hostname. If
this is not specified, 'localhost' will be
assumed.

Start Solr with the defined value as the
min (-Xms) and max (-Xmx) heap size
for the JVM.

Apache Solr Reference Guide 5.5

bi n/ sol r

bi n/ sol r

bi n/ sol r

bi n/ solr

bi n/ solr

bi n/ solr

start

start

start

start

start

start

-C

-d newServerDir

-e schemual ess

-f

-h search. nysolr.com

-m 1g

16

-noprompt Start Solr and suppress any prompts
that may be seen with another option.
This would have the side effect of

accepting all defaults implicitly.

For example, when using the "cloud"
example, an interactive session guides
you through several options for your
SolrCloud cluster. If you want to accept
all of the defaults, you can simply add
the -noprompt option to your request.
-p <port> Start Solr on the defined port. If this is
not specified, '8983' will be used.
-s <dir> Sets the solr.solr.home system
property; Solr will create core
directories under this directory. This

allows you to run multiple Solr instances

on the same host while reusing the
same server directory set using the -d

parameter. If set, the specified directory

should contain a solr.xml file, unless
solr.xml exists in ZooKeeper. The
default value is server/ sol r.

This parameter is ignored when running

examples (-e), as the solr.solr.home
depends on which example is run.

-V Start Solr with verbose messages from
the start script.

-z <zkHost> Start Solr with the defined ZooKeeper
connection string. This option is only
used with the -c option, to start Solr in
SolrCloud mode. If this option is not
provided, Solr will start the embedded
ZooKeeper instance and use that

instance for SolrCloud operations.

bin/solr start -e cloud -nopronpt
bin/solr start -p 8655

bin/solr start -s newHone
bin/solr start -V

bin/solr start -c -z

serverl: 2181, server 2: 2181

To emphasize how the default settings work take a moment to understand that the following commands are

equivalent:
bin/solr start

bin/solr start -h | ocal host

-p 8983 -d server -s solr -m512m

It is not necessary to define all of the options when starting if the defaults are fine for your needs.

Setting Java System Properties

The bin/solr script will pass any additional parameters that begin with -D to the JVM, which allows you to set

arbitrary Java system properties. For example, to set the auto soft-commit frequency to 3 seconds, you can do:

bin/solr start

SolrCloud Mode

The -c and -cloud options are equivalent:

Apache Solr Reference Guide 5.5

-Dsol r. aut oSof t Conmi t . maxTi ne=3000

17

bin/solr start -c
bin/solr start -cloud

If you specify a ZooKeeper connection string, such as -z 192. 168. 1. 4: 2181, then Solr will connect to
ZooKeeper and join the cluster. If you do not specify the -z option when starting Solr in cloud mode, then Solr will
launch an embedded ZooKeeper server listening on the Solr port + 1000, i.e., if Solr is running on port 8983,
then the embedded ZooKeeper will be listening on port 9983.

IMPORTANT: If your ZooKeeper connection string uses a chroot, such as | ocal host : 2181/ sol r, then you
need to bootstrap the /solr znode before launching SolrCloud using the bin/solr script. To do this, you need to
use the zkcl i . sh script shipped with Solr, such as:

server/scripts/cloud-scripts/zkcli.sh -zkhost |ocal host:2181/solr -cnd bootstrap
-sol rhome server/solr

When starting in SolrCloud mode, the interactive script session will prompt you to choose a configset to use.

For more information about starting Solr in SolrCloud mode, see also the section Getting Started with SolrCloud.

Running with Example Configurations

bin/solr start -e <nanme>

The example configurations allow you to get started quickly with a configuration that mirrors what you hope to
accomplish with Salr.

Each example launches Solr in with a managed schema, which allows use of the Schema API to make schema
edits, but does not allow manual editing of schera. xni . If you would prefer to manually modify the schema. xm
| file itself, you can change this default as described in the section Managed Schema Definition in SolrConfig.

Unless otherwise noted in the descriptions below, the examples do not enable SolrCloud nor schemaless mode.
The following examples are provided:

® cloud: This example starts a 1-4 node SolrCloud cluster on a single machine. When chosen, an
interactive session will start to guide you through options to select the initial configset to use, the number
of nodes for your example cluster, the ports to use, and name of the collection to be created. When using
this example, you can choose from any of the available configsets found in $SOLR_HOVE/ server/ sol r
/ confi gsets.

® techproducts: This example starts Solr in standalone mode with a schema designed for the sample
documents included in the $SOLR_HOVE/ exanpl e/ exanpl edocs directory. The configset used can be
found in $SOLR_HOME/ server/ sol r/ confi gset s/ sanpl e_t echpr oduct s_confi gs.

® dih: This example starts Solr in standalone mode with the DatalmportHandler (DIH) enabled and several
example dat aconfi g. xnml files pre-configured for different types of data supported with DIH (such as,
database contents, email, RSS feeds, etc.). The configset used is customized for DIH, and is found in $SO
LR_HOVE/ exanpl e/ exanpl e- DI H sol r/ conf . For more information about DIH, see the section Uploa
ding Structured Data Store Data with the Data Import Handler.

® schemaless: This example starts Solr in standalone mode using a managed schema, as described in the
section Managed Schema Definition in SolrConfig, and provides a very minimal pre-defined schema. Solr
will run in Schemaless Mode with this configuration, where Solr will create fields in the schema on the fly
and will guess field types used in incoming documents. The configset used can be found in $SCLR_HOVE
/ server/solr/configsets/data_driven_schena_configs.

1. The run-in-foreground option (-f) does not work with the -e option since the script needs to perform

additional tasks after starting the Solr server.

Stop

Apache Solr Reference Guide 5.5 18

The stop command sends a STOP request to a running Solr node, which allows it to shutdown gracefully. The
command will wait up to 5 seconds for Solr to stop gracefully and then will forcefully kill the process (kill -9).

bi n/solr stop [options]

bin/solr stop -help

Available Parameters

Parameter Description Example
-p <port> Stop Solr running on the given port. If you are running more than one instance, bi n/solr
or are running in SolrCloud mode, you either need to specify the ports in stop -p
separate requests or use the -all option. 8983
-all Stop all running Solr instances that have a valid PID. bi n/ solr
stop -all
-k <key> Stop key used to protect from stopping Solr inadvertently; default is "solrrocks". bi n/solr
stop -k
sol rrocks

Informational

Version

The version command simply returns the version of Solr currently installed and immediately exists.

$ bin/solr version
5.x.0

Status

The status command displays basic JSON-formatted information for any Solr nodes found running on the local
system. The status command uses the SOLR_PID_DIR environment variable to locate Solr process ID files to
find running Solr instances; the SOLR_PID_DIR variable defaults to the bin directory.

bi n/solr status

The output will include a status of each node of the cluster, as in this example:

Apache Solr Reference Guide 5.5

19

Found 2 Solr nodes:

Sol r process 39920 running on port 7574
{
"sol r_home": "/ Applications/Sol r/solr-5.0.0/exanpl e/ cl oud/ node2/solr/",
"version":"5.0.0 1658469 - anshungupta - 2015-02-09 09: 54: 36",
"startTi me":"2015-02-10T17: 19: 54. 739Z",
"uptinme":"1 days, 23 hours, 55 mnutes, 48 seconds"”,
"nmenory":"77.2 MB (%5.7) of 490.7 MB"
"cloud":{
"ZooKeeper": "l ocal host: 9865",
"liveNodes":"2",
"col l ections":"2"}}

Sol r process 39827 running on port 8865

"sol r_home": "/ Applications/Sol r/solr-5.0.0/exanpl e/ cl oud/ nodel/solr/",
"version":"5.0.0 1658469 - anshungupta - 2015-02-09 09: 54: 36",
"startTi me":"2015-02- 10T17: 19: 49. 057Z",
"uptinme":"1 days, 23 hours, 55 mnutes, 54 seconds",
"menory":"94.2 MB (9%9.2) of 490.7 MB",
"cloud":{

"ZooKeeper": "l ocal host: 9865",

"liveNodes":"2",

"col l ections":"2"}}

Healthcheck

The healthcheck command generates a JSON-formatted health report for a collection when running in SolrCloud
mode. The health report provides information about the state of every replica for all shards in a collection,
including the number of committed documents and its current state.

bi n/ sol r heal t hcheck [options]

bi n/ solr heal t hcheck -help

Available Parameters

Parameter Description Example

-C Name of the collection to run a healthcheck against (required). bi n/ solr

<collection> heal t hcheck
-C

gettingstarted

-z <zkhost> ZooKeeper connection string, defaults to localhost:9983. If you are running bi n/ sol r
Solr on a port other than 8983, you will have to specify the ZooKeeper heal t hcheck
connection string. By default, this will be the Solr port + 1000. -z
| ocal host: 2181

Below is an example healthcheck request and response using a non-standard ZooKeeper connect string, with 2
nodes running:

Apache Solr Reference Guide 5.5 20

$ bin/solr healthcheck -c gettingstarted -z | ocal host: 9865

{

"collection":"gettingstarted",

"status":"heal thy",

"nunDocs": 0,

"nunShar ds": 2,

"shards": [

{

"shard": "shardl",
"status":"heal t hy",
"replicas":[

{
"nanme":"core_nodel",
"url":"http://10.0.1.10: 8865/ solr/gettingstarted_shardl_replica2/",
"nunDocs": 0,
"status":"active",
"uptine":"2 days, 1 hours, 18 minutes, 48 seconds",
"menmory":"25.6 MB (%.2) of 490.7 MB",
"l eader":true},
{

"nanme":"core_node4",
“url":"http://10.0.1.10: 7574/ sol r/ gettingstarted_shardl_replical/",
"nunDocs": 0,
"status":"active",
"uptine":"2 days, 1 hours, 18 minutes, 42 seconds",
"menory":"95.3 MB (9%49.4) of 490.7 MB"}]},
{

"shard":"shard2",

"status":"heal t hy",

"replicas":|

{
"nanme":"core_node2",
“url":"http://10.0.1.10: 8865/ solr/gettingstarted_shard2_replica2/",
"numbDocs": 0,
"status":"active",
"uptine":"2 days, 1 hours, 18 minutes, 48 seconds",
"menmory":"25.8 MB (%.3) of 490.7 MB"},
{

"nane":"core_node3",

"url":"http://10.0.1.10: 7574/ sol r/ gettingstarted_shard2_replicall/",
"nunbDocs": 0,

"status":"active",

"uptine":"2 days, 1 hours, 18 mnutes, 42 seconds",

"menory":"95.4 MB (9%49.4) of 490.7 MB",

"l eader":true}]}]}

Collections and Cores

The bin/solr script can also help you create new collections (in SolrCloud mode) or cores (in standalone mode),
or delete collections.

Create

|~

Apache Solr Reference Guide 5.5

21

' User permissions on "create"
When using the "create” command, be sure that you run this command as the same user that you use to
start Solr. If you use the UNIX/Linux install script, this will normally be a user named "solr". If Solr is
running as the solr user but you use root to create a core, then Solr will not be able to write to the
directories created by the start script.

If you are running in cloud mode, this very likely will not be a problem. In cloud mode, all the
configuration is stored in ZooKeeper, and the create script does not need to make directories or copy
configuration files. Solr itself will create all the necessary directories.

The create command detects the mode that Solr is running in (standalone or SolrCloud) and then creates a core
or collection depending on the mode.

bi n/solr create options

bin/solr create -help

Available Parameters

Parameter Description Example
-C <name> Name of the core or collection to create (required). bi n/ sol r
create -c
nycol | ecti on
-d <confdir> The configuration directory. This defaults to dat a_dri ven_schema_ bin/solr
configs. create -d

See the section Configuration Directories and SolrCloud below for
more details about this option when running in SolrCloud mode.

basi c_confi gs

-n <configName> The configuration name. This defaults to the same name as the core bi n/ sol r
or collection. create -n
basi c
-p <port> Port of a local Solr instance to send the create command to; by default bi n/ sol r
the script tries to detect the port by looking for running Solr instances. create -p
. o . : . 8983
This option is useful if you are running multiple standalone Solr
instances on the same host, thus requiring you to be specific about
which instance to create the core in.
-s <shards> Number of shards to split a collection into, default is 1; only applies bi n/ sol r
hard when Solr is running in SolrCloud mode. create -s 2
-shards

-rf <replicas>

-replicationFactor

Number of copies of each document in the collection. The default is 1
(no replication).

Configuration Directories and SolrCloud

bi n/ sol r
create -rf 2

Before creating a collection in SolrCloud, the configuration directory used by the collection must be uploaded to
ZooKeeper. The create command supports several use cases for how collections and configuration directories

work. The main decision you need to make is whether a configuration directory in ZooKeeper should be shared
across multiple collections. Let's work through a few examples to illustrate how configuration directories work in
SolrCloud.

First, if you don't provide the - d or - n options, then the default configuration ($SOLR_HOVE/ ser ver/ sol r/ con
figsets/data_driven_schenma_configs/conf)is uploaded to ZooKeeper using the same name as the

Apache Solr Reference Guide 5.5 22

collection. For example, the following command will result in the data_driven_schema_configs configuration
being uploaded to / confi gs/ cont act s in ZooKeeper: bi n/solr create -c contacts. If you create
another collection, by doing bi n/ solr create -c cont act s2, then another copy of the dat a_dri ven_sch
ema_conf i gs directory will be uploaded to ZooKeeper under / conf i gs/ cont act s2. Any changes you make
to the configuration for the contacts collection will not affect the contacts2 collection. Put simply, the default
behavior creates a unique copy of the configuration directory for each collection you create.

You can override the name given to the configuration directory in ZooKeeper by using the - n option. For
instance, the command bi n/ solr create -c | ogs -d basic_configs -n basic will upload the serve
r/ sol r/ configsets/basic_configs/conf directory to ZooKeeper as / confi gs/ basi c.

Notice that we used the - d option to specify a different configuration than the default. Solr provides several
built-in configurations under ser ver/ sol r/ conf i gset s. However you can also provide the path to your own
configuration directory using the - d option. For instance, the command bi n/ solr create -c nycoll -d
/t mp/ nyconfi gs, will upload / t np/ myconf i gs into ZooKeeper under / confi gs/ mycol | . To reiterate, the
configuration directory is named after the collection unless you override it using the - n option.

Other collections can share the same configuration by specifying the name of the shared configuration using the
- n option. For instance, the following command will create a new collection that shares the basic configuration
created previously: bi n/solr create -c 1 0gs2 -n basic.

Data-driven schema and shared configurations

The data_driven_schema_configs schema can mutate as data is indexed. Consequently, we recommend that
you do not share data-driven configurations between collections unless you are certain that all collections should
inherit the changes made when indexing data into one of the collections.

Delete

The delete command detects the mode that Solr is running in (standalone or SolrCloud) and then deletes the
specified core (standalone) or collection (SolrCloud) as appropriate.

bin/solr delete [options]
bin/solr delete -help

If running in SolrCloud mode, the delete command checks if the configuration directory used by the collection
you are deleting is being used by other collections. If not, then the configuration directory is also deleted from
ZooKeeper. For example, if you created a collection by doing bi n/ sol r create -c contact s, then the
delete command bi n/ solr del ete -c¢ contact s will check to see if the / confi gs/ cont act s configuratio
n directory is being used by any other collections. If not, then the / conf i gs/ cont act s directory is removed
from ZooKeeper.

Available Parameters

Parameter Description Example
-C <name> Name of the core / collection to delete (required). bi n/ sol r
delete -c
mycol |
-deleteConfig Delete the configuration directory from ZooKeeper. The default is true. bi n/ sol r
<true|false> th . o di i< bei db h llect hen | del ete
If the configuration directory is being used by another collection, then it - del et eConfi g

will not be deleted even if you pass -deleteConfig true. fal se

Apache Solr Reference Guide 5.5 23

-p <port> The port of a local Solr instance to send the delete command to. By bi n/ sol r
default the script tries to detect the port by looking for running Solr delete -p 8983
instances.

This option is useful if you are running multiple standalone Solr
instances on the same host, thus requiring you to be specific about
which instance to delete the core from.

ZooKeeper Operations

The bin/solr script allows certain operations affecting ZooKeeper. These operations are for SolrCloud mode only.
bin/solr zk [options]
bin/solr zk -help

NOTE: Solr should have been started at least once before issuing these commands to initialize ZooKeeper with
the znodes Solr expects. Once ZooKeeper is initialized, Solr doesn't need to be running on any node to use
these commands.

Uploading a Configuration Set

Use this ZooKeeper sub-command to upload one of the pre-configured configuration set or a customized
configuration set to ZooKeeper.

Available Parameters (all parameters are required)

Parameter Description Example

-upconfig Upload a configuration set from the local - upconfig
filesystem to ZooKeeper

-n <name> Name of the configuration set in ZooKeeper. -n nyconfig
This command will upload the configuration set
to the "configs" ZooKeeper node giving it the
name specified.

You can see all uploaded configuration sets in
the Admin Ul via the Cloud screens. Choose
Cloud->tree->configs to see them.

If a pre-existing configuration set is specified, it
will be overwritten in ZooKeeper.

-d The path of the configuration set to upload. It -d directory_under _configsets
<configset should have a "conf" directory immediately -d
dir> below it that in turn contains solrconfig.xml etc. / absol ut e/ pat h/ t o/ confi gset/source

If just a name is supplied,
$SOLR_HOME/server/solr/configsets will be
checked for this name. An absolute path may be
supplied instead.

-2 The ZooKeeper connection string. -z 123.321.23.43: 2181
<zkHost>

Apache Solr Reference Guide 5.5 24

An example of this command with these parameters is:
bi n/solr zk -upconfig -z 111.222.333.444:2181 -n mynewconfig -d /path/to/configset

This command does not automatically make changes effective! It simply uploads the configuration sets to
ZooKeeper. You can use the Collections API to issue a RELOAD command for any collections that uses this
configuration set.

Downloading a Configuration Set
Use this ZooKeeper sub-command to download a configuration set from ZooKeeper to the local filesystem.

Available Parameters (all parameters are required)

Parameter Description Example

-downconfig Download a configuration set from -downconfig
ZooKeeper to the local filesystem.

-n <name> Name of config set in ZooKeeper to -n myconfig
download. The Admin
UI>>Cloud>>tree>>configs node lists all
available configuration sets.

-d The path to write the downloaded -d directory_under _configsets-d
<configset configuration set into. / absol ut e/ pat h/ t o/ confi gset/desti nation
dir>

If just a name is supplied,
SOLR_HOME/server/solr/configsets will
be the parent.

An absolute path may be supplied as
well.

In either case, pre-existing
configurations at the destination will be
overwritten!

-z <zkHost> The ZooKeeper connection string. -z 123.321.23.43: 2181

An example of this command with the parameters is:

bi n/solr zk -downconfig -z 111.222. 333.444:2181 -n nynewonfig -d
/ pat h/ t o/ confi gset

A "best practice" is to keep your configuration sets in some form of version control as the system-of-record. In
that scenario, downconf i g should rarely be used.

Apache Solr Reference Guide 5.5 25

Upgrading Solr

If you are already using Solr 5.4, Solr 5.5 should not present any major problems. However, you should review
the CHANGES. t xt file found in your Solr package for changes and updates that may effect your existing
implementation.

Upgrading from 5.4.x

® The Solr schema version has been increased to 1.6. Since schema version 1.6, all non-stored docVal ue
s fields will be returned along with other stored fields when all fields (or pattern matching globs) are
specified to be returned (e.g. f | =*) for search queries. This behavior can be turned on and off by setting '
useDocVal uesAsSt or ed' parameter for a field or a field type to t r ue (default since schema version 1.6)
or f al se (default till schema version 1.5).
Note that enabling this property has performance implications because DocValues are column-oriented
and may therefore incur additional cost to retrieve for each returned document. All example schema are
upgraded to version 1.6 but any older schemas will default to useDocVal uesAsSt or ed="f al s" e and
continue to work as in older versions of Solr. If this new behavior is desirable, then you should set version
attribute in your schema file to '1.6'. Re-indexing is not necessary to upgrade the schema version.
Also note that while returning non-stored fields from docValues (default in schema versions 1.6+, unless u
seDocVal uesAsSt or ed is false), the values of a multi-valued field are returned in sorted order. If you
require the multi-valued fields to be returned in the original insertion order, then make your multi-valued
field as stored. This requires re-indexing. See SOLR-8220 for more details.

® All protected methods from Cor eAdm nHandl er other than handl eCust omAct i on() have been
removed and can no longer be overridden, If you still wish to override those methods, override the handl
eRequest Body() explicitly. see SOLR-8476 for more details.

® The PERSI STCoreAdmin action which was a NOOP and returned a deprecated message (along with the
corresponding SolrJ options) has been removed. See SOLR-8476 for more details.

® bi n/ post now defaults application/json files to the / updat e/ j son/ docs end-point. Use "- f or mat
sol r " to force files to the / updat e end-point. See SOLR-7042 for more details.

®* Insol rconfig.xm the <ner gePol i cy> element is deprecated in favor of a similar <ner gePol i cyFa
ct or y> element, the <ner geFact or > and <maxMer geDocs> elements are also deprecated, please see
SOLR-8621 for full details.

To migrate your existing sol rconfi g. xnl , you can replace elements as follows:

Apache Solr Reference Guide 5.5 26

http://lucene.apache.org/solr/5_5_0/changes/Changes.html
https://issues.apache.org/jira/browse/SOLR-8220
https://issues.apache.org/jira/browse/SOLR-8476
https://issues.apache.org/jira/browse/SOLR-8476
https://issues.apache.org/jira/browse/SOLR-7042
https://issues.apache.org/jira/browse/SOLR-8621

<!'-- TieredMergePolicy example -->
<!-- deprecated -->
<mer geFact or >??</ ner geFact or >
<mer gePol i cy cl ass="org. apache. | ucene. i ndex. Ti er edMer gePol i cy" >
<bool nane="useConpoundFi | e">???</bool > <!-- deprecated since Lucene/ Sol r
4.4.0 -->

</ mer gePol i cy>

<!-- replacenent -->
<useConpoundFi | e>??7?</ useConpoundFi | e> <! -- since Lucene/Solr 4.4.0 -->
<mer gePol i cyFactory cl ass="org. apache. sol r. i ndex. Ti er edMer gePol i cyFact ory" >
<int name="nmaxMer geAt Once">??</int> <!-- fornerly the <mergeFactor> el enent
inplicitly set this -->
<int name="segnentsPerTier">??</int> <!-- formerly the <nergeFactor> el enent

implicitly set this -->

</ mer gePol i cyFact ory>

<!-- Log(ByteSi ze| Doc) MergePol i cy exanple -->
<!-- deprecated -->
<maxMer geDocs>????</ maxMer geDocs>
<mer geFact or >??</ ner geFact or >
<mer gePol i cy cl ass="org. apache. | ucene. i ndex. Log?Mer gePol i cy" >
<bool nane="useConpoundFi | e">???</bool > <!-- deprecated since Lucene/ Sol r
4.4.0 -->

</ mer gePol i cy>

<!-- replacenent -->
<useConpoundFi | e>??7?</ useConpoundFi | e> <! -- since Lucene/Solr 4.4.0 -->
<mer gePol i cyFactory cl ass="org. apache. sol r. i ndex. Log?Mer gePol i cyFact ory" >

<i nt name="nmaxMer geDocs" >????</int> <!-- formerly the <maxMergeDocs> el enent
set this -->

<int name="nergeFactor">??</int> <l-- fornerly the <nergeFactor> el enent set
this -->

</ mer gePol i cyFact ory>

® Clearing up stored async collection api responses via REQUESTSTATUS call is now deprecated and would
be removed in 6.0. See SOLR-8648 for more details.

* Modifying the schema using the "single action at a time", REST based "/ schenma/ fi el ds", "/ schenma/ d
ynam cfi el ds", "/ schena/ copyfi el ds"and"/ schema/fi el dt ypes" Schema APIs is now
deprecated and will be removed in the future. Users should instead use the "bulk actions" Schema API
via "/ schema". Note that requesting schema information via GET operations on these same endpoints

has not been deprecated, and will be continue to be supported. See SOLR-6594 for more details.

Upgrading from Older Versions of Solr

Users upgrading from older versions are strongly encouraged to consult CHANGES. t xt for the details of all cha
nges since the version they are upgrading from.

® DefaultSimlarityFactory has beenrenamedto Cl assi cSim | arityFactory to match the
underlying rename of Def aul t Simi l arity to d assi cSi m | ari ty and the (eventual) move away
from using it as a default. If you currently have Def aul t Si i | ari t yFact ory explicitly referenced in
your schena. xmi , you will now get a warning urging you to edit your config to use the functionally

Apache Solr Reference Guide 5.5 27

https://issues.apache.org/jira/browse/SOLR-8648
https://issues.apache.org/jira/browse/SOLR-6594
http://lucene.apache.org/solr/5_5_0/changes/Changes.html

identical Cl assicSim larityFactory.Defaul t SinmlarityFactory will be removed completely in
Solr 6. See SOLR-8239 for more details.
® The following internal APIs are deprecated / moved in Solr 5.4 and higher. If you have custom plugins
usmg these APIs please update them see SOLR-7859 and SOLR-8307 for more details:
Sol r Core. get Start Ti ne: Use Sol r Cor e. get St art Ti neSt anp instead.
® Sol rl ndexSear cher. get OpenTi ne: Use Sol r | ndexSear cher . get OpenTi neSt anp instead

® EnptyEntityResol ver was moved from cor e to sol rj , and moved from the or g. apache. so
Ir.util packagetoorg. apache. sol r. common. If you are using this class, you will need to
adjust the import package.
® Solr does not support forcefully unlocking an index as of Solr 5.3. This is no longer supported by the
underlying Lucene locking framework. The unl ockOnSt ar t up setting in solrconfig.xml has no effect
anymore. If you are using simple lock factory (not recommended) or hdfs lock factory, you may need to
manually unlock by deleting the lock file from filesystem or HDFS.
® The system property sol r. sol rxm . | ocat i on is not supported as of Solr 5.3. Now, sol r. xm is
first looked up in zookeeper, and if not found, fallback to SOLR_HOME.
® SolrJ's Col | ecti onAdm nRequest class is now marked as abstract. Use one of its
concrete sub-classes instead.
® Sol rd i ent query functions now declare themselves as throwing | OExcept i on in addition to Sol r Ser
ver Except i on, to bring them in line with the update functions.
® Sol r Request . process() is now final. Subclasses should instead be parameterized by their
corresponding Sol r Response type, and implement cr eat eResponse() .
® The signature of Sol r Di spat chFi | t er. cr eat eCor eCont ai ner () has changed to take (Stri ng, P
roperties) arguments.
® Tika's runtime dependency of ‘jhighlight' was removed as the latter was found to contain some LGPL-only
code. Until that's resolved by Tika, you can download the jar yourself and place it under contri b/ extra
ction/lib.
® The _text catch-all field indata_dri ven_schenma_confi gs has beenrenamedto text
* A bug was introduced in Solr 4.10 that caused index time document boosts to trigger excessive
field boosts in multivalued fields -- the result being that some field norms might be excessively
large. This bug has now been fixed, but users of document boosts are strongly encouraged to
re-index. See SOLR-7335 for more details.
® Solr has internally been upgraded to use Jetty 9. See SOLR-4839 for full details, but there are a few key
details all Solr users should know when upgrading:
® Itis no longer possible to run "j ava -j ar start.jar"frominside the server directory. The bi n
/ sol r script is the only supported way to run Solr. This is nhecessary to support HTTP and HTTPS
modules in Jetty which can be selectively enabled by the bi n/ sol r scripts.
® The way SSL support is configured has been changed. Please refer to the Enabling SSL section in
the Solr Reference Guide for complete details.
®* Merge Policy's noCFSRat i 0 option is no longer set based on <useConpoundFi | e> element in the i nde
xConf i g section of sol rconfi g. xm . This means that Solr will start using Lucene's default for MP noC
FSRat i o. Other value can be set inside the <mer gePol i cy> elementin sol rconfi g. xm . See SOLR
-7463 for detalils.

For users upgrading from Solr 4.x, a summary of the significant changes can be found in the Major Changes
from Solr 4 to Solr 5 section.

Apache Solr Reference Guide 5.5 28

https://issues.apache.org/jira/browse/SOLR-8239
http://solr-7859/
https://issues.apache.org/jira/browse/SOLR-8307
https://issues.apache.org/jira/browse/SOLR-7335
https://issues.apache.org/jira/browse/SOLR-4839
https://issues.apache.org/jira/browse/SOLR-7463
https://issues.apache.org/jira/browse/SOLR-7463

Using the Solr Administration User Interface

This section discusses the Solr Administration User Interface ("Admin UI").

The Overview of the Solr Admin Ul explains the basic features of the user interface, what's on the initial Admin Ul

page and how to configure the interface. In addition, there are pages describing each screen of the Admin Ul:

® Getting Assistance shows you how to get more information about the Ul.

Logging explains the various logging levels available and how to invoke them.

Cloud Screens display information about nodes when running in SolrCloud mode.

Core Admin explains how to get management information about each core.

Java Properties shows the Java information about each core.

Thread Dump lets you see detailed information about each thread, along with state information.
Core-Specific Tools is a section explaining additional screens available for each named core.

Analysis - lets you analyze the data found in specific fields.

Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands
directly from the browser.

Files - shows the current core configuration files such as sol rconfi g. xm and scherma. xm .

Ping - lets you ping a named core and determine whether the core is active.

Plugins/Stats - shows statistics for plugins and other installed components.

Query - lets you submit a structured query about various elements of a core.

Replication - shows you the current replication status for the core, and lets you enable/disable
replication.

Schema Browser - displays schema data in a browser window.

Segments Info - Provides a visualization of the underlying Lucene index segments.

Overview of the Solr Admin Ul

Solr features a Web interface that makes it easy for Solr administrators and programmers to view Solr
configuration details, run queries and analyze document fields in order to fine-tune a Solr configuration and
access online documentation and other help.

W

Solr

. Dt board

vyl anae B hyles]

e - ey

Accessing the URL htt p: // host nanme: 8983/ sol r/ will show the main dashboard, which is divided into two

parts.

A left-side of the screen is a menu under the Solr logo that provides the navigation through the screens of the Ul.
The first set of links are for system-level information and configuration and provide access to Logging, Core

Admin and Java Properties, among other things. At the end of this information is a list of Solr cores configured

Apache Solr Reference Guide 5.5

29

Apache Solr Reference Guide 5.5

for this instance. Clicking on a core name shows a secondary menu of information and configuration options for
the core specifically. Items in this list include the Schema, Config, Plugins, and an ability to perform Queries on
indexed data.

The center of the screen shows the detail of the option selected. This may include a sub-navigation for the option
or text or graphical representation of the requested data. See the sections in this guide for each screen for more
details.

Under the covers, the Solr Admin Ul re-uses the same HTTP APIs available to all clients to access Solr-related
data to drive an external interface.

@ The path to the Solr Admin Ul given above is htt p: / / host name: port/ sol r, which redirectsto ht t p
: /1 host name: port/sol r/#/ inthe current version. A convenience redirect is also supported, so
simply accessing the Admin Ul at ht t p: / / host nane: port/ will also redirect to htt p: // host nane:
port/solr/# .

Configuring the Admin Ul in sol r confi g. xm

You can configure the Solr Admin Ul by editing the file sol r confi g. xm .

The <admi n> block in the sol rconfi g. xm file determines the default query to be displayed in the Query
section of the core-specific pages. The default is *: *, which is to find all documents. In this example, we have
changed the default to the term sol r.

<adm n>
<def aul t Query>sol r </ def aul t Query>
</ adm n>
Related Topics

® Configuring solrconfig.xml

Getting Assistance

At the bottom of each screen of the Admin Ul is a set of links that can be used to get more assistance with
configuring and using Solr.

| Documentation ﬁ Issue Tracker E’L IRC Channel - Community farum L3 Solr Query Syntax

Assistance icons

These icons include the following links.
Link Description
Documentation Navigates to the Apache Solr documentation hosted on http://lucene.apache.org/solr/.

Issue Tracker Navigates to the JIRA issue tracking server for the Apache Solr project. This server resides
at http://issues.apache.org/jira/browse/SOLR.

30

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR

IRC Channel
ki.apache.org/solr/IRCChannels.

Navigates to an Apache Wiki page describing how to join Solr's IRClive-chat room: https://wi

Community Navigates to the Apache Solr web page http://lucene.apache.org/solr/resources.html#comm
forum unity which has further information about ways to engage.

Solr Query Navigates to the section "Query Syntax and Parsing" in this reference guide.

Syntax

These links cannot be modified without editing the adm n. ht ml in the sol r. war that contains the Admin Ul

files.

Logging

The Logging page shows messages from Solr's log files.

When you click the link for "Logging", a page similar to the one below will be displayed:

7
S l _._;_l Logd| larg eHdpimpl. Leg djLogperFacteryl
O r Tirms [Local) Loval Logger Flesusgs
il Dashboard

WNZA01S, T:33:57 P WARN SoleCore | bechprodecty] Solr indes dasctory hameyhouumangtme i §-sorenshobysoir 5. 0 Ofsamplstec horodust ok Sec hproducts
Flatabin” i fard Crealeg Siw el

| Logging | 1127015, TMAE P BRSO SoCore on.apache sok.common Sokfooeption ERADR: |doc=test doc Wl unknown fald Boges feldrame’ |

2l

The Main Logging Screen, including an example of an error due to a bad document sent by a client

While this example shows logged messages for only one core, if you have multiple cores in a single instance,

they will each be listed, with the level for each.

Selecting a Logging Level

S l ‘r’,,é || Logdj (org.sifdj.impl.Log4jLoggerFactory)
O r I root ~ ALL
Jsolr ~ TRACE
& Dashboard org _ DEBUG
_ INFO
& e apache
- hadoop ~ WARN
43 Level - http ~ ERROR
_ FATAL
conn
& Core Admin ssl _ OFF
% Java Properties &~ AllowAllHostnameverifier UNSET
- i nuil
= Thread Dump i~ BrowserCompatHostnameVerifier
* StrictHostnameVerifier null
impl null
_ client null
i+ DefaultHttpClient null
i+ systemDefaultHttpClient nuil
conn null
i+ DefaultClientConnectionOperator null
* PoolingClientConnectionManager nuil
- solr null
- client null
solrj null
= impl null
HttpClientutil null

When you select the Level link on the left, you see the hierarchy of classpaths and classnames for your
instance. A row highlighted in yellow indicates that the class has logging capabilities. Click on a highlighted row,
and a menu will appear to allow you to change the log level for that class. Characters in boldface indicate that

Apache Solr Reference Guide 5.5 31

http://en.wikipedia.org/wiki/Internet_Relay_Chat
https://wiki.apache.org/solr/IRCChannels
https://wiki.apache.org/solr/IRCChannels
http://lucene.apache.org/solr/resources.html#community
http://lucene.apache.org/solr/resources.html#community

the class will not be affected by level changes to root.

For an explanation of the various logging levels, see Configuring Logging.

Cloud Screens

When running in SolrCloud mode, an option will appear in the Admin Ul between Logging and Core Admin for
Cloud. It's not possible at the current time to manage the nodes of the SolrCloud cluster from the Admin Ul, but

you can view them and open the Solr Admin Ul on each node to view the status and statistics for the node and
each core on each node.

(i) Only Visible When using SolrCloud
The "Cloud" menu option is only available on Solr instances running in SolrCloud mode. Single node or
master/slave replication instances of Solr will not display this option.

Click on the Cloud option in the left-hand navigation, and a small sub-menu appears with options called "Tree",
"Graph", "Graph (Radial)" and "Dump". The default view ("Graph™) shows a graph of each collection, the shards
that make up those collections, and the addresses of each replica for each shard. This example shows the very

simple two-node, two-shard, two-replica cluster you can get running the "bi n/ sol r -e cl oud" example:

J”’ shardl
Solr=

shard2

& Dashboard
(&) Legging

= Cloud

a_*

= ® Leader
QO Active
EE Core Admin

A Java Properties

©Q Recovery Failed
= Thread Dump

The "Graph (Radial)" option provides a different visual view of each node. Using the same example cluster, the
radial graph view looks like:

”

Solr~

& Dashboard
(& Logging

== Cloud

A .
! % Graph (Radial) |

shard2 shardl
*

= Core Admin L]

~ Java Properties

gettingstarted

= Thread Dump

. ® Leader
O Active

O Recovery Failed

Apache Solr Reference Guide 5.5 32

The "Tree" option shows a directory structure of the files in ZooKeeper, including cl ust er st at e. j son,
configuration files, and other status and information files. In this example, we show the leader definition for
"shardl" in the "gettingstarted” collection:

""_,4 E i £ version (1]
Solr d |] faliases.json aversion 0

|| jelusterstate.json

children_count 1]
* Lufeollections 1 F 09 23:07:04 UTC 2015 (1420844824550)
ctime ri Jan :07:
& Dashboard . [gettingstarted]
& Logging - | leader_elect cversion 0
! leaders czxid 112
Cloud o
== o i |] shardl ephemeralOowner 93116484291002370
£ Tree “ [] shard2 mtime FriJan 09 23:07:04 UTC 2015 (1420844824550)
A, o |y fconfigs mzxid 112
. |y flive_nodes pad o
- - Ly foverseer
datalLength 124
e ;" |y foverseer_elect
* || fzookeeper (
& Core Admin "core":"gettingstarted_shardl_replica2",
2 Java Properties "node_name":"127.0.1.1:7574_solr",

"base_url":"http://127.0.1.1:7574/s01r"}
= Thread Dump

The final option is "Dump”, which allows you to download an XML file with all the ZooKeeper configuration files.

Core Admin

The Core Admin screen lets you manage your cores.

The buttons at the top of the screen let you add a new core, unload the core displayed, rename the currently
displayed core, swap the existing core with one that you specify in a drop-down box, reload the current core, and
optimize the current core.

The main display and available actions correspond to the commands used with the CoreAdminHandler, but
provide another way of working with your cores.

S J’J,é Add Core =j Rename | J& Swap @ Reload # Optimize
olr-
techproducts] Core
4 Dashboard startTime: 2015-01-09T19:02:53.66Z
(=} Logging instanceDir: fhome/hossman/tmp/solr-5-screenshots/solr-5.0.0/exampleftechproducts/solrftechproducts/
@Com Mmln dataDir: fhomeyhossman/tmpy/selr-5-screenshots/selr-5.0.0/exampleftechpreducts/solrftechproducts/data/
3 Java Properties il Index
= Thread Dump ;
lastModified: about 2 hours ago
. version: 3
numDocs: 32
maxDoc: 57
deletedDocs:
optimized: «
current: <
directory: org.apache.lucene.store.NRTCachingDirectory:NRTCachingDirectory(MMapDirectory@/home/hossman/tmp/solr-
5-screenshots/solr-5.0.0/example/techproducts/solr/techpreducts/data/index
lockFactory=org.apache.lucene.store.NativeFSLockFactory@5672b5b8; maxCacheMB=48.0
maxMergeSizeMB=4.0)

Java Properties

Apache Solr Reference Guide 5.5 33

The Java Properties screen provides easy access to one of the most essential components of a top-performing
Solr systems. With the Java Properties screen, you can see all the properties of the JVM running Solr, including
the class paths, file encodings, JVM memory settings, operating system, and more.

'-’,‘,é STOPKEY solrrocks
SOLr - STOP.PORT 7983

awt.toolkit sun.awt.X11.XToolkit
& Dashboard file.encoding UTF-8
& Logging file.encoding.pkg sun.io
file.separator 7
B Core Admin | java.awt.graphicsenv sun.awt.X11GraphicsEnvironment
{ [l Java Properties | java.awt printerjob sun.print.PSPrinterjob
& Thread Dump java.class.path /homefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/resources

homefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/lib/serviet-api-3.0.jar
/homefhossman/tmp/solr-5-screenshots/solr-5.0.0/server;libfjetty-continuation-8.1.10.v20130312.jar
/homefhossman/tmpjsolr-5-screenshots/solr-5.0.0/server/libfjetty-security-8.1.10.v20130312 jar
Jhomefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/lib/jetty-webapp-8.1.10.v20130312 jar
Jhomefhossman/tmpjsolr-5-screenshots/solr-5.0.0/server/libjext/icl-over-sifdj-1.7.6.jar
Jhomefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/libfext/log4j-1.2.17 jar
Jhomefhossman/tmpjsolr-5-screenshotssolr-5.0.0/server/libfext/slf4j-log4j12-1.7.6.jar

Jhomefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/lib/jetty-io-8.1.10.v20130312. jar

java.class.version 51.0

Thread Dump

The Thread Dump screen lets you inspect the currently active threads on your server. Each thread is listed and
access to the stacktraces is available where applicable. Icons to the left indicate the state of the thread: for
example, threads with a green check-mark in a green circle are in a "RUNNABLE" state. On the right of the
thread name, a down-arrow means you can expand to see the stacktrace for that thread.

"’;’é & Show all Stacktraces
SO lr name cpuTime [userTime

T commitScheduler-8-thread-1 (29) @ 0.3103ms
@ Dashboard L4 0.0000ms
(&3 Logging . searcherExecutor-6-thread-1 (27) & 38.0787ms
- 30.0000ms

& Core Admin .
@ DestroyjavaVM (23) 2020.5950ms

| Java Properties 1950.0000ms

i Thread Dump [Thread-13 (22) & 0.0970ms
+ 0.0000ms

- . HashSessionScavenger-0 (21) & 29.4284ms
+ 20.0000ms

@ qtp173131267-20 (20) B 143.2904ms
120.0000ms

i qtp173131267-19 (19) © 54.0277ms

+ 40.0000ms

7 qtp173131267-18 (18) @ 76.7345ms

+ 60.0000ms

L qtp173131267-17 (17) & 1282.0770ms

+ 1250.0000ms

I qtp173131267-16 (16) @ 294.3809ms

+ 270.0000ms

When you move your cursor over a thread name, a box floats over the name with the state for that thread.
Thread states can be:

State Meaning
NEW A thread that has not yet started.
RUNNABLE A thread executing in the Java virtual machine.

BLOCKED A thread that is blocked waiting for a monitor lock.

Apache Solr Reference Guide 5.5 34

WAITING A thread that is waiting indefinitely for another thread to perform a particular action.

TIMED_WAITING A thread that is waiting for another thread to perform an action for up to a specified
waiting time.

TERMINATED A thread that has exited.

When you click on one of the threads that can be expanded, you'll see the stacktrace, as in the example below:

‘f’_,é = Show all Stacktraces
f ;O [r name cpuTime / userTime
T commitScheduler-8-thread-1 (29) @ 0.3103ms
@ Dashboard + 0.0000ms
(&) Logging i searcherExecutor-6-thread-1 (27) & 38.0787ms
£l 30.0000ms

=f Core Admin

« sun.misc.Unsafe.park(Native Method)

+ java.util.concurrent.locks.LockSupport.park(LockSupport.java: 186)

. : Thread Dump #» java.util.concurrent.locks.AbstractQueuedSynchronizer$ ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
« java.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue.java:442})

« java.util.concurrent. ThreadPoolExecutor.getTask(ThreadPoolExecutor.java: 1068)

+ java.util.concurrent. ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java: 1130}

+ java.util.concurrent. Thread PeolExecutorsWorker.run{ThreadPoolExecutor.java:615)
 java.lang.Thread.run(Thread.java:745)

_ Java Properties

@ DestroyjavavM (23) 2020.5950ms
1950.0000ms

T Thread-13 (22) ® 0.0970ms
< 0.0000ms

Inspecting a thread

You can also check the Show all Stacktraces button to automatically enable expansion for all threads.

Core-Specific Tools

In the left-hand navigation bar, you will see a pull-down menu titled "Core Selector". Clicking on the menu will
show a list of Solr cores, with a search box that can be used to find a specific core (handy if you have a lot of
cores). When you select a core, a secondary menu opens under the core name with the administration options
available for that particular core.

After selecting the core, the central part of the screen shows Statistics and other information about the core you
chose. You can define a file called adni n- extra. ht m that includes links or other information you would like to
display in the "Admin Extra" part of this main screen.

On the left side, under the core name, are links to other screens that display information or provide options for
the specific core chosen. The core-specific options are listed below, with a link to the section of this Guide to find
out more:

Analysis - lets you analyze the data found in specific fields.

Dataimport - shows you information about the current status of the Data Import Handler.

Documents - provides a simple form allowing you to execute various Solr indexing commands directly
from the browser.

Files - shows the current core configuration files such as sol rconfi g. xm and schema. xnl .

Ping - lets you ping a named core and determine whether the core is active.

Plugins/Stats - shows statistics for plugins and other installed components.

Query - lets you submit a structured query about various elements of a core.

Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema Browser - displays schema data in a browser window.

Segments Info - Provides a visualization of the underlying Lucene index segments.

Apache Solr Reference Guide 5.5 35

Analysis Screen

The Analysis screen lets you inspect how data will be handled according to the field, field type and dynamic rule
configurations found in schema. xm . You can analyze how content would be handled during indexing or during
query processing and view the results separately or at the same time. Ideally, you would want content to be

handled consistently, and this screen allows you to validate the settings in the field type or field analysis chains.

Enter content in one or both boxes at the top of the screen, and then choose the field or field type definitions to
use for analysis.

‘f",!‘ Field value (Index) Field value {Query)

SO [r = Running is a Sport running sport

& Dashboard

[Logging Analyse Fieldname / FieldType: | "X8" @ T Analyse Values

=F Core Admin

%/ Java Properties Running | is a | Spert running | sport
Thread Dump Running Sport running = spert
running sport running | sport

techproducts b . .
running sport running = sport

A . .
LY running sport running = sport
37 CNElES run sport running = sport
- run sport

L

If you click the Verbose Output check box, you see more information, including transformations to the input
(such as, convert to lower case, strip extra characters, etc.) and the bytes, type and detailed position information.
The information displayed will vary depending on the settings of the field or field type. Each step of the process is
displayed in a separate section, with an abbreviation for the tokenizer or filter that is applied in that step. Hover or
click on the abbreviation, and you'll see the name and path of the tokenizer or filter.

4”!)‘ Field Value (Index) Field Value (Query)
Solr = Running is a Sport running sport
@ Dashboard
(£ Logging Analyse Fieldname / FieldType: | ‘€Xt-€n MNG) -
& core Admin
2 Java properties Running is a Sport running sport
(5275626269 6e67] | [6973] (611 [53706F7274] (7275626269 6e67] | [73706f7274]
= Thread Dump 0 8 1 13 0 8
7 10 12 18 7 13
techproducts v N 1 N 1 N N
-~ <ALPHANUM> <ALPHANUM> | <ALPHANUM> | <ALPHANUM> <ALPHANUM> <ALPHANUM>
- 1 2 3 4 1 2
F Analysis
Running Sport running sport
- (52 75 6262 69 6e 671 [53706F7274] (7275606269 6e67] | [73706f7274]
@ 0 13 0 8
) 7 18 7 13
= 1 1 1 1
<ALPHANUM> <ALPHANUM> <ALPHANUM> <ALPHANUM>
& 1 4 1 2
£
running sport running sport
[72 75 6e6e 69 62671 [73706f72741 [72756e6e606267] | [13706f7274]
[I5] 0 13 0 8
7 18 7 13
1 1 1 1
<ALPHANUM> <ALPHANUM> <ALPHANUM> <ALPHANUM>
1 4 1 2

In example screenshot above, several transformations are applied to the input "Running is a sport." The words
"is" and "a" have been removed and the word "running" has been changed to its basic form, "run". This is
because we are using the field type t ext _en in this scenario, which is configured to remove stop words (small
words that usually do not provide a great deal of context) and "stem" terms when possible to find more possible
matches (this is particularly helpful with plural forms of words). If you click the question mark next to the Analyze
Fieldname/Field Type pull-down menu, the Schema Browser window will open, showing you the settings for the
field specified.

The section Understanding Analyzers, Tokenizers, and Filters describes in detail what each option is and how it

Apache Solr Reference Guide 5.5 36

may transform your data and the section Running Your Analyzer has specific examples for using the Analysis
screen.

Dataimport Screen

The Dataimport screen shows the configuration of the DatalmportHandler (DIH) and allows you start, and
monitor the status of, import commands as defined by the options selected on the screen and defined in the
configuration file.

"”é @ /dataimport
f)O[r & Indexing ... Abort Import
Command Requests: 1, Fetched: 3, Skipped: 0, Processed: 2
fulkimport j Started: less than a minute ago
& Dashboard
O verbose
(2 Logging Clean & Raw Status-Output
& Core Admin Commit I
%) Java Properties [optimize “responseHeader”: {
o *status": 0,
£ Thread Dump Debug *QTine’: 0
Entity)
— - j “initArgs": [
Start, Rows *defaults.
& [
'
_ “config",
i "rss-data-config.xml®
£] Dataimport Custom Parameters !
_ _ 1.
- “command" : *status’.
) 8 Exccute “status®: “busy”,
= “inportResponse”: ‘A command is still ruming...",
“ N "statusHessages”: {
& *Time Elapsed”: "0:0:0.356",
*Total Requests made to DataSource’: "1°,
£
= *Total Rows Fetched': "3,
*Total Documents Processed”: '2°,
= *Total Docunents Skipped': "G'.
“Full Dump Started": "2015-01-09 23:40:17"
}
T

This screen also lets you adjust various options to control how the data is imported to Solr, and view the data
import configuration file that controls the import. For more information about data importing with DIH, see the
section on Uploading Structured Data Store Data with the Data Import Handler.

Documents Screen

The Documents screen provides a simple form allowing you to execute various Solr indexing commands in a
variety of formats directly from the browser.

:

Sol

The screen allows you to:

® Copy documents in JSON, CSV or XML and submit them to the index
® Upload documents (in JSON, CSV or XML)

Apache Solr Reference Guide 5.5

37

® Construct documents by selecting fields and field values

The first step is to define the RequestHandler to use (aka, 'qt"). By default / updat e will be defined. To use Solr
Cell, for example, change the request handler to / updat e/ extr act .

Then choose the Document Type to define the type of document to load. The remaining parameters will change
depending on the document type selected.

JSON

When using the JSON document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper JSON format.

Then you can choose when documents should be added to the index (Commit Within), whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped), and, finally, if a document boost should be applied.

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command opti
on.

CSV

When using the CSV document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper CSV format, with columns delimited and one row per document.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped).

Document Builder

The Document Builder provides a wizard-like interface to enter fields of a document

File Upload

The File Upload option allows choosing a prepared file and uploading it. If using only / updat e for the
Request-Handler option, you will be limited to XML, CSV, and JSON.

However, to use the ExtractingRequestHandler (aka Solr Cell), you can modify the Request-Handler to / updat e
/ ext ract . You must have this defined in your sol rconfi g. xm file, with your desired defaults. You should
also update the &l i t er al . i d shown in the Extracting Req. Handler Params so the file chosen is given a
unique id.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped).

Solr Command

The Solr Command option allows you use XML or JSON to perform specific actions on documents, such as
defining documents to be added or deleted, updating only certain fields of documents, or commit and optimize
commands on the index.

The documents should be structured as they would be if using / updat e on the command line.

XML

When using the XML document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The

Apache Solr Reference Guide 5.5 38

document structure should still be in proper Solr XML format, with each document separated by <doc> tags and
each field defined.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped).

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command opti
on.

Related Topics

® Uploading Data with Index Handlers
® Uploading Data with Solr Cell using Apache Tika

Files Screen

The Files screen lets you browse & view the various configuration files (such sol r confi g. xm and schenma. x
m) for the core you selected.

.fﬂ_?é

Solr

While sol rconfi g. xm defines the behaviour of Solr as it indexes content and responds to queries, the schem
a. xn allows you to define the types of data in your content (field types), the fields your documents will be
broken into, and any dynamic fields that should be generated based on patterns of field names in the incoming
documents. Any other configuration files are used depending on how they are referenced in either sol rconfi g
.xm orschema. xm .

Configuration files cannot be edited with this screen, so a text editor of some kind must be used.

This screen is related to the Schema Browser Screen, in that they both can display information from the schema,
but the Schema Browser provides a way to drill into the analysis chain and displays linkages between field types,
fields, and dynamic field rules.

Many of the options defined in sol r confi g. xm and schena. xm are described throughout the rest of this
Guide. In particular, you will want to review these sections:

Indexing and Basic Data Operations
Searching
The Well-Configured Solr Instance

[]
[]
[]
® Documents, Fields, and Schema Design

Apache Solr Reference Guide 5.5 39

Ping
Choosing Ping under a core name issues a pi ng request to check whether a server is up.

Ping is configured using a r equest Handl er inthe sol rconfi g. xn file:

<!-- ping/heal thcheck -->
<request Handl er nanme="/adm n/ pi ng" cl ass="sol r. Pi ngRequest Handl er " >
<l st name="invariants">
<str name="q">sol r pi ngquery</str>
</[lst>
<l st name="defaul ts">
<str name="echoParans">al | </str>
</l|st>
<!-- An optional feature of the PingRequestHandler is to configure the
handl er with a "heal thcheckFile" which can be used to enabl e/ di sabl e
t he Pi ngRequest Handl er.
relative paths are resolved against the data dir
oo D
<!-- <str nanme="heal t hcheckFil e">server-enabl ed. txt</str> -->
</ request Handl er >

The Ping option doesn't open a page, but the status of the request can be seen on the core overview page
shown when clicking on a collection name. The length of time the request has taken is displayed next to the Ping
option, in milliseconds.

Examples

Input:

http:// 1 ocal host: 8983/ sol r/ <cor e- nanme>/ adm n/ pi ng

This command will ping the core name for a response.

Input:

http://1ocal host: 8983/ sol r/ <col | ecti on- nane>adm n/ pi ng?wt =j son&di stri b=true& ndent =t
rue

This command will ping all replicas of the given collection name for a response

Sample Output:

Apache Solr Reference Guide 5.5 40

<response>
<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qri me">13</int>
<l st nanme="parans">

<str name="q">{!lucene}*: *</str>
<str name="di strib">fal se</str>
<str name="df"> text </str>
<str nanme="rows">10</str>
<str nanme="echoParans">al | </str>
</|st>
</|st>
<str nanme="status">0K</str>

</ response>

Both API calls have the same output. A status=OK indicates that the nodes are responding.

SolrJ Example:

Sol r Pi ng pi ng

= new

Sol rPi ng();

pi ng. get Parans().add("di strib", "true");

a collection

rsp = ping.process(solrdient,

int status = rsp.getStatus();

Plugins & Stats Screen

The Plugins screen shows information and statistics about Solr's status and performance. You can find
information about the performance of Solr's caches, the state of Solr's searchers, and the configuration of

searchHandlers and requestHandlers.

/1 To make it a distributed request

col | ecti onNan®) ;

Choose an area of interest on the right, and then drill down into more specifics by clicking on one of the names
that appear in the central part of the window. In this example, we've chosen to look at the Searcher stats, from

the Core area:

iy r
- o coRE

U

Apache Solr Reference Guide 5.5

Lapr P @edsdb L 1M echprodein] mae

cosrw

nar b

41

Searcher Statistics

The display is a snapshot taken when the page is loaded. You can get updated status by choosing to either Wat
ch Changes or Refresh Values. Watching the changes will highlight those areas that have changed, while
refreshing the values will reload the page with updated information.

Query Screen

You can use Query, shown under the name of each core, to submit a search query to a Solr server and analyze
the results. In the example in the screenshot, a query has been submitted, and the screen shows the query
results sent to the browser as JSON.

S Ij‘j% Request-Handler (qt) =
(- fselect
{

common *responseHeader*: {
@ Dashboard a "5'?1"5“ Q.
"qQTime": 1,
{2 Logging “parans®: {
i

& Core Admin

"1 *1420841067445",

q
Java Properties fq .
"wt": “json”

Thread Dump)
H
techproducts ~ ~ “response’: {
start, rows “nunFound*: 33,
“start*: o,
"docs": |
fl 1
*id": "GE18030TEST",
“name*: "Test with some GB18030 encoded characters®,

sort

@M -

df

Raw Query Parameters
"This is a feature (translated)”,
"RAREZRELE",
Query wt “This document is very shiny (translated)”
json | B
indent (pricet: 0.
[15] "price_c*: "0.0,UsD",
[debugQuery "inStock”: true,
*_version_": 1489848420687413200
[dismax 3.

The query was sent to a core named "techproducts". We used Solr's default query for this screen (as defined in s
ol rconfi g. xm), which is *: *. This query will find all records in the index for this core. We kept the other
defaults, but the table below explains these options, which are also covered in detail in later parts of this Guide.

The response is shown to the right of the form. Requests to Solr are simply HTTP requests, and the query
submitted is shown in light type above the results; if you click on this it will open a new browser window with just
this request and response (without the rest of the Solr Admin Ul). The rest of the response is shown in JSON,
which is part of the request (see the wt =j son part at the end).

The response has at least two sections, but may have several more depending on the options chosen. The two
sections it always has are the r esponseHeader and the r esponse. The r esponseHeader includes the status
of the search (st at us), the processing time (QTi ne), and the parameters (par ans) that were used to process
the query.

The r esponse includes the documents that matched the query, in doc sub-sections. The fields return depend
on the parameters of the query (and the defaults of the request handler used). The number of results is also
included in this section.

This screen allows you to experiment with different query options, and inspect how your documents were
indexed. The query parameters available on the form are some basic options that most users want to have
available, but there are dozens more available which could be simply added to the basic request by hand (if
opened in a browser). The table below explains the parameters available:

Field Description

Request-handler Specifies the query handler for the request. If a query handler is not specified, Solr
(qt) processes the response with the standard query handler.

Apache Solr Reference Guide 5.5 42

fq

sort

start, rows

fl

indent

debugQuery

dismax

edismax

hl

facet

spatial

spellcheck

The query event. See Searching for an explanation of this parameter.
The filter queries. See Common Query Parameters for more information on this parameter.

Sorts the response to a query in either ascending or descending order based on the
response's score or another specified characteristic.

st art is the offset into the query result starting at which documents should be returned.

The default value is 0, meaning that the query should return results starting with the first

document that matches. This field accepts the same syntax as the start query parameter,
which is described in Searching. r ows is the number of rows to return.

Defines the fields to return for each document. You can explicitly list the stored fields, functi
ons, and doc transformers you want to have returned by separating them with either a
comma or a space.

Specifies the Response Writer to be used to format the query response. Defaults to XML if
not specified.

Click this button to request that the Response Writer use indentation to make the
responses more readable.

Click this button to augment the query response with debugging information, including
"explain info" for each document returned. This debugging information is intended to be
intelligible to the administrator or programmer.

Click this button to enable the Dismax query parser. See The DisMax Query Parser for
further information.

Click this button to enable the Extended query parser. See The Extended DisMax Query
Parser for further information.

Click this button to enable highlighting in the query response. See Highlighting for more
information.

Enables faceting, the arrangement of search results into categories based on indexed
terms. See Faceting for more information.

Click to enable using location data for use in spatial or geospatial searches. See Spatial
Search for more information.

Click this button to enable the Spellchecker, which provides inline query suggestions based
on other, similar, terms. See Spell Checking for more information.

Related Topics

® Searching

Replication Screen

The Replication screen shows you the current replication state for the named core you have specified. SolrCloud
has supplanted much of this functionality, but if you are still using Master-Slave index replication, you can use
this screen to:

1. View the replicatable index state. (on a master node)
2. View the current replication status (on a slave node)

Apache Solr Reference Guide 5.5 43

3. Disable replication. (on a master node)

1, Caution When Using SolrCloud
When using SolrCloud, do not attempt to disable replication via this screen.

More details on how to configure replication is available in the section called Index Replication.

Schema Browser Screen

The Schema Browser screen lets you see schema data in a browser window. If you have accessed this window
from the Analysis screen, it will be opened to a specific field, dynamic field rule or field type. If there is nothing
chosen, use the pull-down menu to choose the field or field type.

"",!4 text ~ | Field: text
Solr=
Field-Type: org.apache.solr.schema. TextField
Field PG y'p lE)gO ’
text DD(SVP' 22
& Dashboard Copied from .
& Logging author Indexed Tokenized Multivalued
cat Properties « L' v
& Core Admin content Schems v I v

% Java Properties Index
£ Thread Dump

(@ Index Analyzer: org.apache.solr.analysis. TokenizerChain &

echproducts v
@ Query Analyzer: org.apache.solr.analysis. TokenizerChain &

@ Load Term Info; 10 TopTerms: () Histogram:

; electronics 292
inc 2
- and 27

= usb P
= led 1
notes
& 2.0
memory
one

x

|-/schema Browser

The screen provides a great deal of useful information about each particular field. In the example above, we
have chosen the t ext field. On the right side of the center window, we see the field name, and a list of fields that
populate this field because they are defined to be copied to the t ext field. Click on one of those field names,
and you can see the definitions for that field. We can also see the field type, which would allow us to inspect the
type definitions as well.

In the left part of the center window, we see the field type again, and the defined properties for the field. We can
also see how many documents have populated this field. Then we see the analyzer used for indexing and query
processing. Click the icon to the left of either of those, and you'll see the definitions for the tokenizers and/or
filters that are used. The output of these processes is the information you see when testing how content is
handled for a particular field with the Analysis Screen.

Under the analyzer information is a button to Load Term Info. Clicking that button will show the top N terms that
are in the index for that field. Click on a term, and you will be taken to the Query Screen to see the results of a
query of that term in that field. If you want to always see the term information for a field, choose Autoload and it
will always appear when there are terms for a field. A histogram shows the number of terms with a given
frequency in the field.

Segments Info

The Segments Info screen lets you see a visualization of the various segments in the underlying Lucene index,
with information about the size of each segment — both bytes and in number of documents — as well as other
basic metadata about those segments, notably the number of deleted documents.

.
Solr~*

Apache Solr Reference Guide 5.5 44

This information may be useful for people to help make decisions about the optimal merge settings for their data.

Apache Solr Reference Guide 5.5

45

https://cwiki.apache.org/confluence/display/solr/IndexConfig+in+SolrConfig#IndexConfiginSolrConfig-MergingIndexSegments

Documents, Fields, and Schema Design

This section discusses how Solr organizes its data into documents and fields, as well as how to work with a
schema in Solr.

This section includes the following topics:
Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the default Solr
schema.

Defining Fields: Describes how to define fields in Solr.
Copying Fields: Describes how to populate fields with data copied from another field.

Dynamic Fields: Information about using dynamic fields in order to catch and index fields that do not exactly
conform to other field definitions in your schema.

Schema API: Use curl commands to read various parts of a schema or create new fields and copyField rules.
Other Schema Elements: Describes other important elements in the Solr schema.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work together.
DocValues: Describes how to create a docValues index for faster lookups.

Schemaless Mode: Automatically add previously unknown schema fields using value-based field type guessing.

Overview of Documents, Fields, and Schema Design

The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it questions
and find the piece of information you want. The part where you feed in all the information is called indexing or up
dating. When you ask a question, it's called a query.

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you add a recipe to
the book, you update the index at the back. You list each ingredient and the page number of the recipe you just
added. Suppose you add one hundred recipes. Using the index, you can very quickly find all the recipes that use
garbanzo beans, or artichokes, or coffee, as an ingredient. Using the index is much faster than looking through
each recipe one by one. Imagine a book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above shows how to
build an index with just one field, i ngr edi ent s. You could have other fields in the index for the recipe's cooking
style, like Asi an, Caj un, or vegan, and you could have an index field for preparation times. Solr can answer
questions like "What Cajun-style recipes that have blood oranges as an ingredient can be prepared in fewer than
30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a document, which is a set of data that describes something. A recipe document
would contain the ingredients, the instructions, the preparation time, the cooking time, the tools needed, and so
on. A document about a person, for example, might contain the person's name, biography, favorite color, and
shoe size. A document about a book could contain the title, author, year of publication, number of pages, and so
on.

Apache Solr Reference Guide 5.5 46

In the Solr universe, documents are composed of fields, which are more specific pieces of information. Shoe size
could be a field. First name and last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A shoe size field
might be a floating point number so that it could contain values like 6 and 9.5. Obviously, the definition of fields is
flexible (you could define a shoe size field as a text field rather than a floating point number, for example), but if
you define your fields correctly, Solr will be able to interpret them correctly and your users will get better results
when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its field type. The field type tells Solr how to
interpret the field and how it can be queried.

When you add a document, Solr takes the information in the document's fields and adds that information to an
index. When you perform a query, Solr can quickly consult the index and return the matching documents.

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate name for this
process would be processing or even digestion, but the official name is analysis.

Consider, for example, a biography field in a person document. Every word of the biography must be indexed so
that you can quickly find people whose lives have had anything to do with ketchup, or dragonflies, or

cryptography.

However, a biography will likely contains lots of words you don't care about and don't want clogging up your
index—words like "the", "a", "to", and so forth. Furthermore, suppose the biography contains the word "Ketchup",
capitalized at the beginning of a sentence. If a user makes a query for "ketchup", you want Solr to tell you about
the person even though the biography contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how to break apart
the biography into words. You can tell Solr that you want to make all the words lower case, and you can tell Solr
to remove accents marks.

Field analysis is an important part of a field type. Understanding Analyzers, Tokenizers, and Filters is a detailed
description of field analysis.

Solr's Schema File

Solr stores details about the field types and fields it is expected to understand in a schema file. The name and
location of this file may vary depending on how you initially configured Solr or if you modified it later.

®* schema. xnl is the traditional name for the schema file and the schema is still mostly referred to by this
name throughout this Guide.

®* managed- schena is the name for the schema file if Solr's managed schema feature has been enabled.
This feature allows you to interact with the schema via the Schema API. This feature allows for other
names to be used instead if you choose. However, if you started Solr from one of the example
configurations, you will likely see this name in use.

® |f you are using SolrCloud you may not be able to find any file by these names on the local filesystem.
You will only be able to see the schema through the Schema API (if enabled) or through the Solr Admin
Ul's Cloud Screens.

Whichever name of the file is being used in your installation, the structure of the file is not changed. However, the
way you interact with the file will change. If you are using the managed schema, it is expected that you only
interact with the file with the Schema API, and never make manual edits. If you do not use the managed schema,
it is expected that you never use the Schema API and only make manual edits.

Note that if you are not using the Schema API yet you do use SolrCloud, you will need to interact with schena. x
m through ZooKeeper using upconfig and downconfig commands to make a local copy and upload your
changes. The options for doing this are described in Solr Start Script Reference and Using ZooKeeper to

Apache Solr Reference Guide 5.5 47

Manage Configuration Files.

Solr Field Types

The field type defines how Solr should interpret data in a field and how the field can be queried. There are many
field types included with Solr by default, and they can also be defined locally.

Topics covered in this section:
® Field Type Definitions and Properties
®* Field Types Included with Solr
® Working with Currencies and Exchange Rates
® Working with Dates
® Working with Enum Fields
® Working with External Files and Processes

® Field Properties by Use Case

Related Topics

® SchemaXML-DataTypes
® FieldType Javadoc

Field Type Definitions and Properties

A field type definition can include four types of information:

The name of the field type (mandatory)

An implementation class name (mandatory)

If the field type is Text Fi el d, a description of the field analysis for the field type

Field type properties - depending on the implementation class, some properties may be mandatory.

Field Type Definitions in schema. xni

Field types are defined in schena. xni . Each field type is defined between f i el dType elements. They can
optionally be grouped within a t ypes element. Here is an example of a field type definition for a type called t ex
t _general :

Apache Solr Reference Guide 5.5 48

http://wiki.apache.org/solr/SchemaXml#Data_Types
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/schema/FieldType.html

<fiel dType nane="text _general" class="solr. TextFi el d" positionlncrenent Gap="100">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
/>
<I-- in this exanple, we will only use synonyns at query tine
<filter class="solr.SynonynFilterFactory" synonyns="index_synonymns.txt"
i gnoreCase="true" expand="fal se"/>
oo
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
/>
<filter class="solr.SynonynFilterFactory" synonyns="synonymns.txt"
i gnoreCase="true" expand="true"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The first line in the example above contains the field type name, t ext _gener al , and the name of the
implementing class, sol r. Text Fi el d. The rest of the definition is about field analysis, described in Understand
ing Analyzers, Tokenizers, and Filters.

The implementing class is responsible for making sure the field is handled correctly. In the class names in schem
a. xm , the string sol r is shorthand for or g. apache. sol r. schena or or g. apache. sol r. anal ysi s.
Therefore, sol r. Text Fi el d is really or g. apache. sol r. schena. Text Fi el d. .

Field Type Properties

The field type cl ass determines most of the behavior of a field type, but optional properties can also be defined.
For example, the following definition of a date field type defines two properties, sort M ssi ngLast and oni t No
rns.

<fiel dType nane="date" class="solr. TrieDateFi el d"
sort M ssingLast="true" om tNornms="true"/>

The properties that can be specified for a given field type fall into three major categories:

® Properties specific to the field type's class.

® General Properties Solr supports for any field type.

® Field Default Properties that can be specified on the field type that will be inherited by fields that use this
type instead of the default behavior.

General Properties

Property Description Values

name The name of the fieldType. This value gets used in field definitions,
in the "type" attribute. It is strongly recommended that names consist
of alphanumeric or underscore characters only and not start with a
digit. This is not currently strictly enforced.

Apache Solr Reference Guide 5.5 49

class

positionincrementGap

autoGeneratePhraseQueries

docValuesFormat

postingsFormat

The class name that gets used to store and index the data for this
type. Note that you may prefix included class nhames with "solr." and
Solr will automatically figure out which packages to search for the
class - so "solr.TextField" will work. If you are using a third-party
class, you will probably need to have a fully qualified class name.
The fully qualified equivalent for "solr.TextField" is
"org.apache.solr.schema.TextField".

For multivalued fields, specifies a distance between multiple values,
which prevents spurious phrase matches

For text fields. If true, Solr automatically generates phrase queries for
adjacent terms. If false, terms must be enclosed in double-quotes to

be treated as phrases.

Defines a custom DocVal uesFor mat to use for fields of this type.
This requires that a schema-aware codec, such as the SchenaCode

cFact ory has been configured in solrconfig.xml.

Defines a custom Post i ngsFor mat to use for fields of this type.
This requires that a schema-aware codec, such as the SchenaCode

cFact ory has been configured in solrconfig.xml.

integer

true or
false

n/a

n/a

@ Lucene index back-compatibility is only supported for the default codec. If you choose to customize the p
ost i ngsFor mat or docVal uesFor mat in your schema.xml, upgrading to a future version of Solr may
require you to either switch back to the default codec and optimize your index to rewrite it into the default

codec before upgrading,

Field Default Properties

or re-build your entire index from scratch after upgrading.

These are properties that can be specified either on the field types, or on individual fields to override the values
provided by the field types. The default values for each property depend on the underlying Fi el dType class,
which in turn may depend on the ver si on attribute of the <schera/ >. The table below includes the default
value for most Fi el dType implementations provided by Solr, assuming a schema. xnl that declares ver si on

="1.6".

Property

indexed

stored

docValues

sortMissingFirst

sortMissingLast

multiValued

Apache Solr Reference Guide 5.5

Description Values
If true, the value of the field can be used in queries to true or
retrieve matching documents false
If true, the actual value of the field can be retrieved by true or
queries false
If true, the value of the field will be put in a column-oriented true or
DocValues structure false
Control the placement of documents when a sort field is not true or
present. false
If true, indicates that a single document might contain true or
multiple values for this field type false

Implicit
Default
true
true
false

false

false

50

omitNorms

omitTermFregAndPositions

omitPositions

termVectors
termPositions
termOffsets
termPayloads

required

useDocValuesAsStored

If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for the
field, and saves some memory). Defaults to true for all
primitive (non-analyzed) field types, such as int, float,
data, bool, and string. Only full-text fields or fields that
need an index-time boost need norms.

If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces the
storage space required for the index. Queries that rely on
position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all
field types that are not text fields.

Similar to oni t Ter nFr eqAndPosi t i ons but preserves
term frequency information

These options instruct Solr to maintain full term vectors for
each document, optionally including position, offset and
payload information for each term occurrence in those
vectors. These can be used to accelerate highlighting and
other ancillary functionality, but impose a substantial cost in
terms of index size. They are not necessary for typical uses
of Solr.

Instructs Solr to reject any attempts to add a document
which does not have a value for this field. This property
defaults to false.

If the field has docValues enabled, setting this to true would
allow the field to be returned as if it were a stored field (even
if it has st or ed=f al se) when matching "*" in an fl
parameter.

Field Types Included with Solr

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

false

false

true

The following table lists the field types that are available in Solr. The or g. apache. sol r. schenma package
includes all the classes listed in this table.

Class
BinaryField

BoolField

CollationField

CurrencyField

Apache Solr Reference Guide 5.5

Description

Binary data.

Contains either true or false. Values of "1", "t", or "T" in the first
character are interpreted as true. Any other values in the first character

are interpreted as false.

Supports Unicode collation for sorting and range queries.
ICUCollationField is a better choice if you can use ICU4J. See the

section Unicode Collation.

Supports currencies and exchange rates. See the section Working

with Currencies and Exchange Rates.

51

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation

DateRangeField

ExternalFileField

EnumField

ICUCollationField

LatLonType

PointType

PreAnalyzedField

RandomSortField

SpatialRecursivePrefixTreeFieldType

StrField
TextField

TrieDateField

TrieDoubleField

TrieField

Apache Solr Reference Guide 5.5

Supports indexing date ranges, to include point in time date instances
as well (single-millisecond durations). See the section Working with
Dates for more detail on using this field type. Consider using this field
type even if it's just for date instances, particularly when the queries
typically fall on UTC year/month/day/hour, etc., boundaries.

Pulls values from a file on disk. See the section Working with External
Files and Processes.

Allows defining an enumerated set of values which may not be easily
sorted by either alphabetic or numeric order (such as a list of
severities, for example). This field type takes a configuration file, which
lists the proper order of the field values. See the section Working with
Enum Fields for more information.

Supports Unicode collation for sorting and range queries. See the
section Unicode Collation.

Spatial Search: a latitude/longitude coordinate pair. The latitude is
specified first in the pair.

Spatial Search: An arbitrary n-dimensional point, useful for searching
sources such as blueprints or CAD drawings.

Provides a way to send to Solr serialized token streams, optionally
with independent stored values of a field, and have this information
stored and indexed without any additional text processing.
Configuration and usage of PreAnalyzedField is documented on the W
orking with External Files and Processes page.

Does not contain a value. Queries that sort on this field type will return
results in random order. Use a dynamic field to use this feature.

(RPT for short) Spatial Search: Accepts latitude comma longitude
strings or other shapes in WKT format.

String (UTF-8 encoded string or Unicode).
Text, usually multiple words or tokens.

Date field. Represents a point in time with millisecond precision. See
the section Working with Dates. pr eci si onSt ep="0" enables
efficient date sorting and minimizes index size; pr eci si onSt ep="8"
(the default) enables efficient range queries.

Double field (64-bit IEEE floating point). pr eci si onSt ep="0" enable
s efficient numeric sorting and minimizes index size; pr eci si onSt ep
="8" (the default) enables efficient range queries.

If this field type is used, a "type" attribute must also be specified, valid
values are: i nt eger, | ong, f| oat, doubl e, dat e. Using this field is
the same as using any of the Trie fields. pr eci si onSt ep="0" enabl
es efficient numeric sorting and minimizes index size; pr eci si onSt e
p="8" (the default) enables efficient range queries.

52

https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes#WorkingwithExternalFilesandProcesses-ThePreAnalyzedFieldType
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes#WorkingwithExternalFilesandProcesses-ThePreAnalyzedFieldType

TrieFloatField Floating point field (32-bit IEEE floating point). pr eci si onSt ep="0"
enables efficient numeric sorting and minimizes index size; pr eci si o
nSt ep="8" (the default) enables efficient range queries.

TrielntField Integer field (32-bit signed integer). pr eci si onSt ep="0" enables
efficient numeric sorting and minimizes index size; pr eci si onSt ep=
"8" (the default) enables efficient range queries.

TrieLongField Long field (64-bit signed integer). pr eci si onSt ep="0" enables
efficient numeric sorting and minimizes index size; pr eci si onSt ep=
"8" (the default) enables efficient range queries.

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and
Solr will create a new UUID. Note: configuring a UUIDField instance
with a default value of "NEW" is not advisable for most users when
using SolrCloud (and not possible if the UUID value is configured as
the unique key field) since the result will be that each replica of each
document will get a unique UUID value. Using
UUIDUpdateProcessorFactory to generate UUID values when
documents are added is recommended instead.

The Mul ti Ter mAwar eConponent has been added to relevant sol r. Text Fi el d entries in schema. xm (e.g.
, wildcards, regex, prefix, range, etc.) to allow automatic lowercasing for multi-term queries.

Further, you can optionally specify a multi-term analyzer in field types in your schema: <anal yzer
type="nul titernt>;if you don't do this, anal yzer will process the fields according to their specific
attributes.

Working with Currencies and Exchange Rates

The cur r ency FieldType provides support for monetary values to Solr/Lucene with query-time currency
conversion and exchange rates. The following features are supported:

Point queries

Range queries

Function range queries

Sorting

Currency parsing by either currency code or symbol

Symmetric & asymmetric exchange rates (asymmetric exchange rates are useful if there are fees
associated with exchanging the currency)

Configuring Currencies

The cur r ency field type is defined in schema. xm . This is the default configuration of this type:

<fi el dType nane="currency" class="solr.CurrencyFi el d" precisionStep="8"
defaul t Currency="USD" currencyConfig="currency.xm" />

In this example, we have defined the name and class of the field type, and defined the def aul t Curr ency as
"USD", for U.S. Dollars. We have also defined a cur r encyConf i g to use a file called "currency.xml". This is a
file of exchange rates between our default currency to other currencies. There is an alternate implementation that
would allow regular downloading of currency data. See Exchange Rates below for more.

At indexing time, money fields can be indexed in a native currency. For example, if a product on an e-commerce
site is listed in Euros, indexing the price field as "1000,EUR" will index it appropriately. The price should be

Apache Solr Reference Guide 5.5 53

separated from the currency by a comma, and the price must be encoded with a floating point value (a decimal
point).

During query processing, range and point queries are both supported.

Exchange Rates

You configure exchange rates by specifying a provider. Natively, two provider types are supported: Fi | eExchan
geRat eProvi der or OpenExchangeRat esOr gPr ovi der .

FileExchangeRateProvider

This provider requires you to provide a file of exchange rates. It is the default, meaning that to use this provider
you only need to specify the file path and name as a value for cur r encyConf i g in the definition for this type.

There is a sample cur rency. xm file included with Solr, found in the same directory as the schema. xm file.
Here is a small snippet from this file:

<currencyConfig version="1.0">
<rates>
<!-- Updated from http://ww. exchangerate.com at 2011-09-27 -->
<rate fron="USD' to="ARS" rate="4.333871" comment="ARGENTI NA Peso" />
<rate from="USD"' to="AUD"' rate="1.025768" comment="AUSTRALI A Dollar" />
<rate from="USD' to="EUR' rate="0.743676" comment="European Euro" />
<rate frone"USD' to="CAD' rate="1.030815" coment="CANADA Dol lar" />

<l-- Cross-rates for sonme commopn currencies -->
<rate fronF"EUR' to="GBP" rate="0.869914" />
<rate fronF"EUR' to="NOK" rate="7.800095" />
<rate frone"GBP" to="NOK" rate="8.966508" />

<l-- Asymetrical rates -->
<rate from"EUR' to="USD' rate="0.5" />
</rates>

</ currencyConfi g>

OpenExchangeRatesOrgProvider

You can configure Solr to download exchange rates from OpenExchangeRates.Org, with updates rates between
USD and 158 currencies hourly. These rates are symmetrical only.

In this case, you need to specify the pr ovi der C ass in the definitions for the field type. Here is an example:

<fiel dType nane="currency" class="solr.CurrencyFi el d* precisionStep="8"
provi der Cl ass="sol r. OpenExchangeRat esOr gPr ovi der"
refreshlnterval =" 60"

rat esFi | eLocati on="http://ww. openexchanger at es. org/ api /| atest.j son?app_i d=your Per so
nal Appl dkey"/ >

The r ef reshl nt er val is minutes, so the above example will download the newest rates every 60 minutes.
The refresh interval may be increased, but not decreased.

Working with Dates

Apache Solr Reference Guide 5.5 54

http://www.OpenExchangeRates.Org

Date Formatting

Solr's Tr i eDat eFi el d (and deprecated Dat eFi el d) represents a point in time with millisecond precision. The
format used is a restricted form of the canonical representation of dat eTi e in the XML Schema specification:

YYYY- MMt DDThh: mm ssZ

® YYYY is the year.

MMis the month.

DD is the day of the month.

hh is the hour of the day as on a 24-hour clock.

nmis minutes.

Ss is seconds.

Z is a literal 'Z' character indicating that this string representation of the date is in UTC

Note that no time zone can be specified; the String representations of dates is always expressed in Coordinated
Universal Time (UTC). Here is an example value:

1972-05-20T17: 33: 1872

You can optionally include fractional seconds if you wish, although any precision beyond milliseconds will be
ignored. Here are examples value with sub-seconds include:

® 1972-05-20T17: 33:18. 772Z
® 1972-05-20T17:33:18.77Z
® 1972-05-20T17:33:18.7Z

(D Query escaping may be required
As you can see, the date format includes colon characters separating the hours, minutes, and seconds.
Because the colon is a special character to Solr's most common query parsers, escaping is sometimes
required, depending on exactly what you are trying to do.

This is normally an invalid query:
datefield:1972-05-20T17:33:18.772Z

These are valid queries:
datefield:1972-05-20T17\:33\:18.772Z
datefield:"1972-05-20T17:33:18.772Z2"
datefield:[1972-05-20T17:33:18.772 TO *

Date Range Formatting

Solr's Dat eRangeFi el d supports the same point in time date syntax described above (with date math describe
d below) and more to express date ranges. One class of examples is truncated dates, which represent the entire
date span to the precision indicated. The other class uses the range syntax ([TO]). Here are some

examples:
® 2000- 11 — The entire month of November, 2000.
® 2000- 11T13 - Likewise but for the 13th hour of the day (1pm-2pm).
® -0009 —The year 10 BC. A 0in the year position is 0 AD, and is also considered 1 BC.
® [2000-11-01 TO 2014- 12-01] — The specified date range at a day resolution.
® [2014 TO 2014-12-01] - From the start of 2014 till the end of the first day of December.
® [* TO 2014-12-01] - From the earliest representable time thru till the end of 2014-12-01.

Apache Solr Reference Guide 5.5 55

http://www.w3.org/TR/xmlschema-2/#dateTime

Limitations: The range syntax doesn't support embedded date math. If you specify a date instance supported by
TrieDateField with date math truncating it, like NOW DAY, you still get the first millisecond of that day, not the
entire day's range. Exclusive ranges (using { & }) work in queries but not for indexing ranges.

Date Math

Solr's date field types also supports date math expressions, which makes it easy to create times relative to fixed
moments in time, include the current time which can be represented using the special value of "NOW.

Date Math Syntax

Date math expressions consist either adding some quantity of time in a specified unit, or rounding the current
time by a specified unit. expressions can be chained and are evaluated left to right.

For example: this represents a point in time two months from now:

NOW2 MONTHS

This is one day ago:

NOW 1DAY

A slash is used to indicate rounding. This represents the beginning of the current hour:
NOW HOUR

The following example computes (with millisecond precision) the point in time six months and three days into the
future and then rounds that time to the beginning of that day:

NOW6 MONTHS+3DAYS/ DAY

Note that while date math is most commonly used relative to NOWit can be applied to any fixed moment in time
as well:

1972- 05- 20T17: 33: 18. 772Z+6MONTHS+3DAYS/ DAY
Request Parameters That Affect Date Math

NOW

The NOwparameter is used internally by Solr to ensure consistent date math expression parsing across multiple
nodes in a distributed request. But it can be specified to instruct Solr to use an arbitrary moment in time (past or
future) to override for all situations where the the special value of "NOW would impact date math expressions.

It must be specified as a (long valued) milliseconds since epoch
Example:

g=sol r&f g=start_date:[* TO NOW &NOW-1384387200000
TZ

By default, all date math expressions are evaluated relative to the UTC TimeZone, but the TZ parameter can be
specified to override this behaviour, by forcing all date based addition and rounding to be relative to the specified
time zone.

For example, the following request will use range faceting to facet over the current month, "per day" relative
UTC:

Apache Solr Reference Guide 5.5 56

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

http://1ocal host: 8983/ solr/my_col |l ection/sel ect?q=*: *&f acet.range=ny_date_fiel d&f ace
t =t rue&f acet . range. st art =NOW MONTH&f acet . r ange. end=NOW MONTHY2 BLMONTH&f acet . r ange. ga
p=%B1DAY

<int nanme="2013-11-01T00: 00: 00Z">0</i nt >
<int name="2013-11-02T00: 00: 00Z">0</i nt >
<int nane="2013-11-03T00: 00: 00Z">0</i nt >
<int nane="2013-11-04T00: 00: 00Z">0</i nt >
<int nanme="2013-11-05T00: 00: 00Z">0</i nt >
<int name="2013-11-06T00: 00: 00Z">0</i nt >
<int nane="2013-11-07T00: 00: 00Z">0</i nt >

While in this example, the "days" will be computed relative to the specified time zone - including any applicable
Daylight Savings Time adjustments:

http://1ocal host: 8983/ solr/my_col |l ection/sel ect ?2q=*: *&f acet.range=ny_date_fi el d&f ace
t =t rue&f acet . range. st art =NOW MONTH&f acet . r ange. end=NOW MONTHY2 BLMONTH&f acet . r ange. ga
p=%@2B1DAY&TZ=Aner i ca/ Los_Angel es

<int nanme="2013-11-01T07: 00: 00Z">0</int>
<int name="2013-11-02T07: 00: 00Z">0</i nt>
<int nane="2013-11-03T07: 00: 00Z">0</i nt >
<int nane="2013-11-04T08: 00: 00Z">0</i nt >
<int nanme="2013-11-05T08: 00: 00Z">0</i nt >
<int name="2013-11-06T08: 00: 00Z">0</i nt >
<int nane="2013-11-07T08: 00: 00Z">0</i nt >

More DateRangeField Details

Dat eRangeFi el d is almost a drop-in replacement for places where Tr i eDat eFi el d is used. The only
difference is that Solr's XML or SolrJ response formats will expose the stored data as a String instead of a Date.
The underlying index data for this field will be a bit larger. Queries that align to units of time a second on up
should be faster than TrieDateField, especially if it's in UTC. But the main point of DateRangeField as it's name
suggests is to allow indexing date ranges. To do that, simply supply strings in the format shown above. It also
supports specifying 3 different relational predicates between the indexed data, and the query range: | nt er sect
s (default), Cont ai ns, Wt hi n. You can specify the predicate by querying using the op local-params
parameter like so:

fg={!field f=dat eRange op=Contai ns}[2013 TO 2018]

In that example, it would find documents with indexed ranges that contain (or equals) the range 2013 thru 2018.
Multi-valued overlapping indexed ranges in a document are effectively coalesced.

For a DateRangeField example use-case and possibly other info, see Solr's community wiki.

Working with Enum Fields

Apache Solr Reference Guide 5.5 57

http://wiki.apache.org/solr/DateRangeField

The EnumField type allows defining a field whose values are a closed set, and the sort order is pre-determined
but is not alphabetic nor numeric. Examples of this are severity lists, or risk definitions.

Defining an EnumField in schenma. xm

The EnumField type definition is quite simple, as in this example defining field types for "priorityLevel" and
"riskLevel" enumerations:

<fiel dType nane="priorityLevel " class="solr.EnunField* enunsConfi g="enunsConfig. xm "
enumNane="priority"/>
<fiel dType nane="ri skLevel " cl ass="sol r. Enunti el d* enunsConfi g="enunsConfi g. xm "
enumNanme="ri sk" />

Besides the nane and the cl ass, which are common to all field types, this type also takes two additional
parameters:

® enunsConfi g: the name of a configuration file that contains the <enuni > list of field values and their
order that you wish to use with this field type. If a path to the file is not defined specified, the file should be
in the conf directory for the collection.

® enumNane: the name of the specific enumeration in the enunsConf i g file to use for this type.

Defining the EnumField configuration file

The file named with the enunsConf i g parameter can contain multiple enumeration value lists with different
names if there are multiple uses for enumerations in your Solr schema.

In this example, there are two value lists defined. Each list is between enumopening and closing tags:

<?xm version="1.0" ?>
<enunsConfi g>
<enum nanme="priority">
<val ue>Not Avai | abl e</val ue>
<val ue>Low</ val ue>
<val ue>Medi unx/ val ue>
<val ue>Hi gh</ val ue>
<val ue>Ur gent </ val ue>
</ enunp
<enum nane="ri sk">
<val ue>Unknown</ val ue>
<val ue>Very Low</val ue>
<val ue>Low</ val ue>
<val ue>Medi unx/ val ue>
<val ue>Hi gh</ val ue>
<val ue>Criti cal </ val ue>
</ enunp
</ enunsConfi g>

1. Changing Values
You cannot change the order, or remove, existing values in an <enum > without reindexing.

You can however add new values to the end.

Working with External Files and Processes

Apache Solr Reference Guide 5.5 58

® The ExternalFileField Type
® Format of the External File
® Reloading an External File
® The PreAnalyzedField Type
® JsonPreAnalyzedParser
® SimplePreAnalyzedParser

The External Fi | eFi el d Type

The Ext er nal Fi | eFi el d type makes it possible to specify the values for a field in a file outside the Solr index.
For such a field, the file contains mappings from a key field to the field value. Another way to think of this is that,
instead of specifying the field in documents as they are indexed, Solr finds values for this field in the external file.

1. External fields are not searchable. They can be used only for function queries or display. For more
information on function queries, see the section on Function Queries.

The Ext er nal Fi | eFi el d type is handy for cases where you want to update a particular field in many
documents more often than you want to update the rest of the documents. For example, suppose you have
implemented a document rank based on the number of views. You might want to update the rank of all the
documents daily or hourly, while the rest of the contents of the documents might be updated much less
frequently. Without Ext er nal Fi | eFi el d, you would need to update each document just to change the rank.
Using Ext er nal Fi | eFi el d is much more efficient because all document values for a particular field are stored
in an external file that can be updated as frequently as you wish.

In schera. xm , the definition of this field type might look like this:

<fiel dType nane="entryRankFil e" keyFi el d="pkld" defVal ="0" stored="fal se"
i ndexed="f al se" class="sol r.External Fil eFi el d" val Type="pfloat"/>

The keyFi el d attribute defines the key that will be defined in the external file. It is usually the unique key for the
index, but it doesn't need to be as long as the keyFi el d can be used to identify documents in the index. A def V
al defines a default value that will be used if there is no entry in the external file for a particular document.

The val Type attribute specifies the actual type of values that will be found in the file. The type specified must be
either a float field type, so valid values for this attribute are pf | oat, fl oat ortfl oat. This attribute can be
omitted.

Format of the External File

The file itself is located in Solr's index directory, which by default is $SOLR_HOVE/ dat a. The name of the file
should be ext ernal _fi el dnane or ext ernal _fi el dnane. *. For the example above, then, the file could
be named ext er nal _ent r yRankFi | e or ext er nal _ent ryRankFi | e. t xt .

(-:r) If any files using the name pattern . * (such as . t xt) appear, the last (after being sorted by name) will
be used and previous versions will be deleted. This behavior supports implementations on systems
where one may not be able to overwrite a file (for example, on Windows, if the file is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the right. Here are a
few example entries:

doc33=1. 414
doc34=3. 14159
doc40=42

Apache Solr Reference Guide 5.5 59

The keys listed in this file do not need to be unique. The file does not need to be sorted, but Solr will be able to
perform the lookup faster if it is.

Reloading an External File

It's possible to define an event listener to reload an external file when either a searcher is reloaded or when a
new searcher is started. See the section Query-Related Listeners for more information, but a sample definition in
sol rconfi g. xm might look like this:

<l i stener event="newSearcher"

cl ass="org. apache. sol r. schena. Ext ernal Fi | eFi el dRel oader "/ >
<listener event="firstSearcher"

cl ass="org. apache. sol r. schena. Ext ernal Fi | eFi el dRel oader"/>

The PreAnal yzedFi el d Type

The Pr eAnal yzedFi el d type provides a way to send to Solr serialized token streams, optionally with
independent stored values of a field, and have this information stored and indexed without any additional text
processing applied in Solr. This is useful if user wants to submit field content that was already processed by
some existing external text processing pipeline (e.g., it has been tokenized, annotated, stemmed, synonyms
inserted, etc.), while using all the rich attributes that Lucene's TokenStream provides (per-token attributes).

The serialization format is pluggable using implementations of PreAnalyzedParser interface. There are two
out-of-the-box implementations:

® JsonPreAnalyzedParser: as the name suggests, it parses content that uses JSON to represent field's
content. This is the default parser to use if the field type is not configured otherwise.

® SimplePreAnalyzedParser: uses a simple strict plain text format, which in some situations may be easier
to create than JSON.

There is only one configuration parameter, par ser | npl . The value of this parameter should be a fully qualified
class name of a class that implements PreAnalyzedParser interface. The default value of this parameter is or g.
apache. sol r. schema. JsonPr eAnal yzedPar ser.

By default, the query-time analyzer for fields of this type will be the same as the index-time analyzer, which
expects serialized pre-analyzed text. You must add a query type analyzer to your fieldType in order to perform
analysis on non-pre-analyzed queries. In the example below, the index-time analyzer expects the default JSON
serialization format, and the query-time analyzer will employ StandardTokenizer/LowerCaseFilter:

<fiel dType nane="pre_w th_query_anal yzer" class="solr.PreAnal yzedFi el d">
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

JsonPreAnalyzedParser

This is the default serialization format used by PreAnalyzedField type. It uses a top-level JSON map with the
following keys:

Key Description Required?
v Version key. Currently the supported version is 1. required
str Stored string value of a field. You can use at most one of str or bi n. optional

Apache Solr Reference Guide 5.5 60

https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-Query-RelatedListeners

bi n Stored binary value of a field. The binary value has to be Base64 encoded. optional
t okens serialized token stream. This is a JSON list. optional
Any other top-level key is silently ignored.

Token stream serialization

The token stream is expressed as a JSON list of JSON maps. The map for each token consists of the following
keys and values:

Key Description Lucene Attribute Value Required?
t token CharTermAttribute UTF-8 string representing the current token required
S start offset OffsetAttribute Non-negative integer optional
e end offset OffsetAttribute Non-negative integer optional
i position PositionincrementAttribute Non-negative integer - default is 1 optional
increment
p payload PayloadAttribute Base64 encoded payload optional
y lexical type TypeAttribute UTF-8 string optional
f flags FlagsAttribute String representing an integer value in optional

hexadecimal format

Any other key is silently ignored.

Example
{
VAR A
"str":"test 06",
"tokens": [
{"t":"one","s":123,"e":128,"i":22,"p": "DQAKDQRODg8=", "y": "word"},
{"t":"two","s":5,"e":8,"i":1,"y":"word"},
{"t":"three","s":20,"e":22,"i":1,"y":"foobar"}
]
}

SimplePreAnalyzedParser

The fully qualified class name to use when specifying this format via the par ser | npl configuration parameter is
or g. apache. sol r. schema. Si npl ePr eAnal yzedPar ser .

Syntax

The serialization format supported by this parser is as follows:

Apache Solr Reference Guide 5.5 61

http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/CharTermAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/OffsetAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PositionIncrementAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PayloadAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/TypeAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/FlagsAttribute.html

Serialization format

content ::= version (stored)? tokens
version ::=digit+ " "
stored field value - any "=" inside nust be escaped!
stored ::= "=" text "="
tokens ::= (token ((" ") + token)*)*
token ::=text ("," attrib)*
attrib ::= nane '='" val ue
name ::= text
val ue ::= text

Special characters in "text" values can be escaped using the escape character \ . The following escape
sequences are recognized:

Escape Description
Sequence
" literal space character
", literal , character
"\ =" literal = character
"\ literal \ character
"\ n" newline
“\r" carriage return
"\t horizontal tab

Please note that Unicode sequences (e.g. \ u0001) are not supported.

Supported attribute names

The following token attributes are supported, and identified with short symbolic names:

Name Description Lucene attribute Value format

i position increment PositionincrementAttribute integer

S start offset OffsetAttribute integer

e end offset OffsetAttribute integer

y lexical type TypeAttribute string

f flags FlagsAttribute hexadecimal integer

p payload PayloadAttribute bytes in hexadecimal format; whitespace is ignored

Token positions are tracked and implicitly added to the token stream - the start and end offsets consider only the
term text and whitespace, and exclude the space taken by token attributes.

Example token streams

Apache Solr Reference Guide 5.5 62

http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PositionIncrementAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/OffsetAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/TypeAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/FlagsAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PayloadAttribute.html

1 one two three

version: 1

stored: null

token: (term=one,startOffset=0,endOffset=3)
token: (term=t wo,startOffset=4,endOffset=7)
token: (term=t hr ee,startOffset=8,endOffset=13)

1 one two t hree

version: 1

stored: null

token: (term=one,startOffset=0,endOffset=3)
token: (term=t wo,startOffset=5,endOffset=8)
token: (term=t hr ee,startOffset=11,endOffset=16)

1 one, s=123,e=128,i =22 two three, s=20, e=22

version: 1

stored: null

token: (term=one,positionincrement=22,startOffset=123,endOffset=128)
token: (term=t wo,positionincrement=1,startOffset=5,endOffset=8)
token: (term=three,positionIncrement=1,startOffset=20,endOffset=22)

1\ one\ \,,i=22,a=\, two\=

\n,\ =\ \

® version: 1

® stored: null

® token: (term= one , ,positionincrement=22,startOffset=0,endOffset=6)
[]

token: (term=t wo=

,positionincrement=1,startOffset=7,endOffset=15)
® token: (term=\ ,positionincrement=1,startOffset=17,endOffset=18)

Note that unknown attributes and their values are ignored, so in this example, the "a" attribute on the
first token and the " " (escaped space) attribute on the second token are ignored, along with their
values, because they are not among the supported attribute names.

1 ,i=22 ,i=33,s=2,e=20 ,

version: 1

stored: null

token: (term=,positionincrement=22,startOffset=0,endOffset=0)
token: (term=,positionincrement=33,startOffset=2,endOffset=20)
token: (term=,positionincrement=1,startOffset=2,endOffset=2)

Apache Solr Reference Guide 5.5 63

1 =This is the stored part with \=
\n \'t escapes.=one two three

® version: 1
® stored:"This is the stored part with =

\'t escapes."
® token: (term=one,startOffset=0,endOffset=3)
® token: (term=t wo,startOffset=4,endOffset=7)
® token: (term=t hr ee,startOffset=8,endOffset=13)

Note that the "\ t " in the above stored value is not literal; it's shown that way to visually indicate the
actual tab char that is in the stored value.

1 ==

® version: 1
® stored: ™
® (no tokens)

1 =this is a test.=

® version: 1
® stored: "this is a test.”
® (no tokens)

Field Properties by Use Case

Here is a summary of common use cases, and the attributes the fields or field types should have to support the
case. An entry of true or false in the table indicates that the option must be set to the given value for the use
case to function correctly. If no entry is provided, the setting of that attribute has no impact on the case.

Use Case indexed stored multiValued omitNorms termVectors termPositions docValues

search within true
field

retrieve true
contents

use as true false
unique key

sorton field trye? false true 1 true’

use field false
boosts °

document false
boosts affect

searches

within field

highlighting trye 4 true true? true 3

Apache Solr Reference Guide 5.5 64

faceting ° true true

add multiple true
values,

maintaining

order

field length false
affects doc
score

MoreLikeThis true ©
5

Notes:

1 Recommended but not necessary.

2 Will be used if present, but not necessary.

3 (if termVectors=true)

4 A tokenizer must be defined for the field, but it doesn't need to be indexed.
5 Described in Understanding Analyzers, Tokenizers, and Filters.

6 Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term vectors are
recommended, but only required if st or ed=f al se.

7 Either i ndexed or docVal ues must be true, but both are not required. DocValues can be more efficient in
many cases.

Defining Fields

Fields are defined in the fields element of schema. xm . Once you have the field types set up, defining the fields
themselves is simple.

Example

The following example defines a field named pri ce with a type named f | oat and a default value of 0. 0; the i
ndexed and st or ed properties are explicitly set to t r ue, while any other properties specified on the f | oat fiel
d type are inherited.

<field nane="price" type="float" default="0.0" indexed="true" stored="true"/>

Field Properties

Property Description

name The name of the field. Field names should consist of alphanumeric or underscore characters only
and not start with a digit. This is not currently strictly enforced, but other field names will not have
first class support from all components and back compatibility is not guaranteed. Names with both
leading and trailing underscores (e.g. _ver si on_) are reserved. Every field must have a narne.

type The name of the fi el dType for this field. This will be found in the "nane" attribute on the fi el d
Type definition. Every field must have a t ype.

Apache Solr Reference Guide 5.5 65

default

field when it is indexed. If this property is not specified, there is no default.

Optional Field Type Override Properties

A default value that will be added automatically to any document that does not have a value in this

Fields can have many of the same properties as field types. Properties from the table below which are specified
on an individual field will override any explicit value for that property specified on the the <f i el dType/ > of the
field, or any implicit default property value provided by the underlying Fi el dType implementation. The table
below is reproduced from Field Type Definitions and Properties, which has more details:

Property

indexed

stored
docValues
sortMissingFirst
sortMissingLast

multiValued

omitNorms

omitTermFregAndPositions

omitPositions

termVectors
termPositions
termOffsets
termPayloads

required

Apache Solr Reference Guide 5.5

Description

If true, the value of the field can be used in queries to
retrieve matching documents

If true, the actual value of the field can be retrieved by
queries

If true, the value of the field will be put in a column-oriented
DocValues structure

Control the placement of documents when a sort field is not
present.

If true, indicates that a single document might contain
multiple values for this field type

If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for the
field, and saves some memory). Defaults to true for all
primitive (non-analyzed) field types, such as int, float,
data, bool, and string. Only full-text fields or fields that
need an index-time boost need norms.

If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces the
storage space required for the index. Queries that rely on
position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all
field types that are not text fields.

Similar to omi t Ter nFr eqAndPosi ti ons but preserves
term frequency information

These options instruct Solr to maintain full term vectors for
each document, optionally including position, offset and
payload information for each term occurrence in those
vectors. These can be used to accelerate highlighting and
other ancillary functionality, but impose a substantial cost in
terms of index size. They are not necessary for typical uses
of Solr.

Instructs Solr to reject any attempts to add a document
which does not have a value for this field. This property
defaults to false.

Values

true or

false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

Implicit
Default

true

true

false

false

false

false

false

66

useDocValuesAsStored If the field has docValues enabled, setting this to true would true or true
allow the field to be returned as if it were a stored field (even false
if it has st or ed=f al se) when matching "*" in an fl
parameter.

Related Topics

® SchemaXML-Fields
® Field Options by Use Case

Copying Fields

You might want to interpret some document fields in more than one way. Solr has a mechanism for making
copies of fields so that you can apply several distinct field types to a single piece of incoming information.

The name of the field you want to copy is the source, and the name of the copy is the destination. In schena. xm
|, it's very simple to make copies of fields:

<copyFi el d source="cat" dest="text" maxChars="30000" />

In this example, we want Solr to copy the cat field to a field named t ext . Fields are copied before analysis is
done, meaning you can have two fields with identical original content, but which use different analysis chains and
are stored in the index differently.

In the example above, if the t ext destination field has data of its own in the input documents, the contents of the
cat field will be added as additional values — just as if all of the values had originally been specified by the client.
Remember to configure your fields as nul ti val ued="t r ue" if they will ultimately get multiple values (either
from a multivalued source or from multiple copyFi el d directives).

A common usage for this functionality is to create a single "search" field that will serve as the default query field
when users or clients do not specify a field to query. For example, ti t| e, aut hor, keywor ds, and body may
all be fields that should be searched by default, with copy field rules for each field to copy to a cat chal | field
(for example, it could be named anything). Later you can set a rule in sol r confi g. xm to search the cat chal
| field by default. One caveat to this is your index will grow when using copy fields. However, whether this
becomes problematic for you and the final size will depend on the number of fields being copied, the number of
destination fields being copied to, the analysis in use, and the available disk space.

The maxChar s parameter, an i nt parameter, establishes an upper limit for the number of characters to be
copied from the source value when constructing the value added to the destination field. This limit is useful for
situations in which you want to copy some data from the source field, but also control the size of index files.

Both the source and the destination of copyFi el d can contain either leading or trailing asterisks, which will
match anything. For example, the following line will copy the contents of all incoming fields that match the
wildcard pattern * _t to the text field.:

<copyField source="*_t" dest="text" maxChars="25000" />

1. The copyFi el d command can use a wildcard (*) character in the dest parameter only if the sour ce p
arameter contains one as well. copyFi el d uses the matching glob from the source field for the dest fie
Id name into which the source content is copied.

Apache Solr Reference Guide 5.5 67

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
http://wiki.apache.org/solr/SchemaXml#Fields
http://wiki.apache.org/solr/FieldOptionsByUseCase

Dynamic Fields

Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is useful if you
discover you have forgotten to define one or more fields. Dynamic fields can make your application less brittle by
providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are indexing
documents, a field that does not match any explicitly defined fields can be matched with a dynamic field.

For example, suppose your schema includes a dynamic field with a name of * _i . If you attempt to index a
document with a cost _i field, but no explicit cost _i field is defined in the schema, then the cost i field will
have the field type and analysis defined for * _i .

Like regular fields, dynamic fields have a name, a field type, and options.

<dynami cField nane="*_i" type="int" indexed="true" stored="true"/>

It is recommended that you include basic dynamic field mappings (like that shown above) in your schenma. xnm .
The mappings can be very useful.

Related Topics

¢ SchemaXML-Dynamic Fields

Other Schema Elements

This section describes several other important elements of schema. xm .

Unique Key

The uni queKey element specifies which field is a unique identifier for documents. Although uni queKey is not
required, it is nearly always warranted by your application design. For example, uni queKey should be used if
you will ever update a document in the index.

You can define the unique key field by naming it:

<uni queKey>i d</ uni queKey>

Schema defaults and copyFi el ds cannot be used to populate the uni queKey field. You also can't use UUl DU
pdat ePr ocessor Fact or y to have uni queKey values generated automatically.

Further, the operation will fail if the uni queKey field is used, but is multivalued (or inherits the multivalueness
from the f i el dt ype). However, uni queKey will continue to work, as long as the field is properly used.

Default Search Field

If you are using the Lucene query parser, queries that don't specify a field name will use the defaultSearchField.
The DisMax and Extended DisMax query parsers will also fallback to this if gf is not specified.

(D Use of the def aul t Sear chFi el d element is deprecated in Solr versions 3.6 and higher. Instead, you
should use the df request parameter. At some point, the def aul t Sear chFi el d element may be
removed.

Apache Solr Reference Guide 5.5 68

http://wiki.apache.org/solr/SchemaXml#Dynamic_fields

For more information about query parsers, see the section on Query Syntax and Parsing.

Query Parser Default Operator

In queries with multiple terms, Solr can either return results where all conditions are met or where one or more
conditions are met. The operator controls this behavior. An operator of AND means that all conditions must be
fulfilled, while an operator of OR means that one or more conditions must be true.

In schema. xm , the sol r Quer yPar ser element controls what operator is used if an operator is not specified in
the query. The default operator setting only applies to the Lucene query parser, not the DisMax or Extended
DisMax query parsers, which internally hard-code their operators to OR.

@ The query parser default operator parameter has been deprecated in Solr versions 3.6 and higher. You
are instead encouraged to specify the query parser q. op parameter in your request handler.

Similarity
Similarity is a Lucene class used to score a document in searching.

A global <si m | ari t y> declaration can be used to specify a custom similarity implementation that you want
Solr to use when dealing with your index. A similarity can be specified either by referring directly to the name of a
class with a no-argument constructor, such as in this example showing Cl assi ¢Si mi | ari ty (which is also the
default if there is no <si mi | ari t y/ > specified in the schena. xm):

<simlarity class="solr.C assicSimlarity"/>
or by referencing a Si mi | ari t yFact or y implementation, which may take optional initialization parameters:

<simlarity class="solr.DFRSimlarityFactory">
<str name="basi cModel ">P</str>
<str name="afterEffect">L</str>
<str nanme="nornalization">H2</str>
<fl oat nanme="c">7</fl oat >
</[simlarity>

A special SchemaSi mi | ari t yFact ory is available, which allows individual field types to be configured with a
specific similarity to override the default behavior, and can likewise choose what that default behavior will be for
all other field types using the name of field type (specified by def aul t Si nFr onFi el dType) that is configured

with a specific similarity:

Apache Solr Reference Guide 5.5 69

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/search/similarities/SchemaSimilarityFactory.html

<simlarity class="solr.SchemaSi mlarityFactory">
<str name="def aul t Si nfronti el dType" >t ext _dfr</str>
<simlarity>
<fiel dType nane="text _dfr" class="solr. TextFiel d">
<anal yzer ... />
<simlarity class="solr.DFRSinmilarityFactory">
<str name="basi cModel ">| (F)</str>
<str name="afterEffect">B</str>
<str name="normalization">H3</str>
<fl oat nane="nu">900</fl oat >
</[simlarity>
</fieldType>
<fiel dType nane="text _ib">
<anal yzer ... />
<simlarity class="solr.IBSimlarityFactory">
<str nanme="distribution">SPL</str>
<str name="| anbda" >DF</str>
<str nanme="normali zation">H2</str>
</[simlarity>
</fieldType>
<fiel dType nane="text ot her">
<anal yzer ... />
</fieldType>

In the example above | BSi ni | ari t yFact ory (using the Information-Based model) will be used for any fields
of type t ext _i b, while DFRSI mi | ari t yFact ory (divergence from random) will be used for any fields of type t
ext _df r, as well as any fields using a type that does not explicitly specify a <si nmi l arity/>.

If SchenaSi nmi | arityFact ory is used with out a def aul t Si nFr onFi el dType specified, then Cl assi cSi m
i larity isimplicitly used as the default.

In addition to the various factories mentioned on this page, there are several other similarity implementations that
can be used such as the Sweet Spot Si i | ari t yFact ory, BM25Si mi | ari t yFact ory, etc.... For details, see

the Solr Javadocs for the similarity factories.

Related Topics

® SchemaXML-Miscellaneous Settings
® UniqueKey

Schema API

The Schema API provides read and write access to the Solr schema for each collection (or core, when using
standalone Solr). Read access to all schema elements is supported. Fields, dynamic fields, field types and
copyField rules may be added, removed or replaced. Future Solr releases will extend write access to allow more
schema elements to be modified.

I Re-index after schema modifications!
If you modify your schema, you will likely need to re-index all documents. If you do not, you may lose
access to documents, or not be able to interpret them properly, e.g. after replacing a field type.

Modifying your schema will never modify any documents that are already indexed. Again, you must
re-index documents in order to apply schema changes to them.

Apache Solr Reference Guide 5.5 70

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://wiki.apache.org/solr/SchemaXml#Miscellaneous_Settings
http://wiki.apache.org/solr/UniqueKey

To enable schema modification with this API, the schema will need to be managed and mutable. See the section
Managed Schema Definition in SolrConfig for more information.

The API allows two output modes for all calls: JSON or XML. When requesting the complete schema, there is
another output mode which is XML modeled after the schema.xml file itself.

When modifying the schema with the API, a core reload will automatically occur in order for the changes to be
available immediately for documents indexed thereafter. Previously indexed documents will not be automatically
handled - they must be re-indexed if they used schema elements that you changed.

The base address for the APl is htt p: // <host >: <port >/ sol r/ <col | ecti on_nane>. If for example you
run Solr's "cl oud" example (via the bi n/ sol r command shown below), which creates a "getti ngst art ed”
collection, then the base URL (as in all the sample URLSs in this section) would be: htt p: / /| ocal host : 8983/
solr/gettingstarted .

bin/solr -e cloud -nopronpt

® API Entry Points
®* Modify the Schema
¢ Add a New Field
Delete a Field
Replace a Field
Add a Dynamic Field Rule
Delete a Dynamic Field Rule
Replace a Dynamic Field Rule
Add a New Field Type
Delete a Field Type
Replace a Field Type
Add a New Copy Field Rule
Delete a Copy Field Rule
Multiple Commands in a Single POST
® Schema Changes among Replicas
® Retrieve Schema Information
® Retrieve the Entire Schema
List Fields
List Dynamic Fields
List Field Types
List Copy Fields
Show Schema Name
Show the Schema Version
List UniqueKey
Show Global Similarity
® Get the Default Query Operator
® Manage Resource Data

API| Entry Points

/ schena: retrieve the schema, or modify the schema to add, remove, or replace fields, dynamic fields, copy
fields, or field types

/ schenma/ fi el ds: retrieve information about all defined fields or a specific named field

/ schema/ dynami cfi el ds: retrieve information about all dynamic field rules or a specific named dynamic rule
/ schena/ fi el dt ypes: retrieve information about all field types or a specific field type

/ schema/ copyfi el ds: retrieve information about copy fields

/ schenma/ nane: retrieve the schema name

Apache Solr Reference Guide 5.5 71

/ schema/ ver si on: retrieve the schema version

/ schema/ uni quekey: retrieve the defined uniqgueKey

/ schema/ si mi | arity: retrieve the global similarity definition

/ schenma/ sol r quer ypar ser/ def aul t oper at or : retrieve the default operator

Modify the Schema

POST /col | ecti on/ schemn

To add, remove or replace fields, dynamic field rules, copy field rules, or new field types, you can send a POST
request to the / col | ecti on/ schenma/ endpoint with a sequence of commands to perform the requested
actions. The following commands are supported:

® add-fi el d: add a new field with parameters you provide.
* del ete-fiel d: delete afield.
®* repl ace-fi el d: replace an existing field with one that is differently configured.

® add-dynami c-fi el d: add a new dynamic field rule with parameters you provide.
® del et e-dynani c-fi el d: delete a dynamic field rule.
®* repl ace-dynam c-fi el d: replace an existing dynamic field rule with one that is differently configured.

® add-fiel d-type: add a new field type with parameters you provide.
* del ete-field-type: delete afield type.
®* repl ace-fiel d-type: replace an existing field type with one that is differently configured.

® add- copy-fi el d: add a new copy field rule.
® del et e-copy-fi el d: delete a copy field rule.

These commands can be issued in separate POST requests or in the same POST request. Commands are
executed in the order in which they are specified.

In each case, the response will include the status and the time to process the request, but will not include the
entire schema.

When modifying the schema with the API, a core reload will automatically occur in order for the
changes to be available immediately for documents indexed thereafter. Previously indexed documents

will not be automatically handled - they must be re-indexed if they used schema elements that you
changed.

Add a New Field

The add-fi el d command adds a new field definition to your schema. If a field with the same name exists an
error is thrown.

All of the properties available when defining a field with manual schena. xm edits can be passed via the API.
These request attributes are described in detail in the section Defining Fields.

For example, to define a new stored field named "sell-by", of type "tdate", you would POST the following request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field":({
"name":"sel |l -by",
"type":"tdate",
"stored":true }
}' http://local host:8983/sol r/gettingstarted/ schena

Apache Solr Reference Guide 5.5 72

Delete a Field

The del et e-fi el d command removes a field definition from your schema. If the field does not exist in the
schema, or if the field is the source or destination of a copy field rule, an error is thrown.

For example, to delete a field named "sell-by", you would POST the following request:

curl -X POST -H 'Content-type: application/json' --data-binary '{
"delete-field" : { "nane":"sell-by" }
}' http://1ocal host:8983/solr/gettingstarted/ schema

Replace a Field

The r epl ace- fi el d command replaces a field's definition. Note that you must supply the full definition for a
field - this command will not partially modify a field's definition. If the field does not exist in the schema an error
is thrown.

All of the properties available when defining a field with manual schena. xm edits can be passed via the API.
These request attributes are described in detail in the section Defining Fields.

For example, to replace the definition of an existing field "sell-by", to make it be of type "date" and to not be
stored, you would POST the following request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"replace-field":{
"name":"sell -by",
"type":"date",
"stored":fal se }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Add a Dynamic Field Rule

The add- dynani c-fi el d command adds a new dynamic field rule to your schema.

All of the properties available when editing schenma. xml can be passed with the POST request. The section Dyn
amic Fields has details on all of the attributes that can be defined for a dynamic field rule.

For example, to create a new dynamic field rule where all incoming fields ending with "_s" would be stored and
have field type "string", you can POST a request like this:

curl -X POST -H 'Content-type: application/json' --data-binary '{
"add-dynam c-field":{
"nanme":"*_s",
"type":"string",
"stored":true }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Delete a Dynamic Field Rule
The del et e- dynani c-fi el d command deletes a dynamic field rule from your schema. If the dynamic field

rule does not exist in the schema, or if the schema contains a copy field rule with a target or destination that
matches only this dynamic field rule, an error is thrown.

Apache Solr Reference Guide 5.5 73

For example, to delete a dynamic field rule matching "*_s", you can POST a request like this:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"del ete-dynamc-field":{ "name":"*_s" }
}'" http://local host:8983/solr/gettingstarted/ schema

Replace a Dynamic Field Rule

The r epl ace- dynami c-fi el d command replaces a dynamic field rule in your schema. Note that you must
supply the full definition for a dynamic field rule - this command will not partially modify a dynamic field rule's
definition. If the dynamic field rule does not exist in the schema an error is thrown.

All of the properties available when editing schenma. xml can be passed with the POST request. The section Dyn
amic Fields has details on all of the attributes that can be defined for a dynamic field rule.

For example, to replace the definition of the "*_s" dynamic field rule with one where the field type is
"text_general" and it's not stored, you can POST a request like this:

curl -X POST -H ' Content-type: application/json' --data-binary '{
"repl ace-dynam c-field":{
"nanme":"*_s",
"type":"text_general ",
"stored":fal se }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Add a New Field Type

The add-fi el d-t ype command adds a new field type to your schema.

All of the field type properties available when editing schema. xm by hand are available for use in a POST
request. The structure of the command is a json mapping of the standard field type definition, including the
name, class, index and query analyzer definitions, etc. Details of all of the available options are described in the
section Solr Field Types.

For example, to create a new field type named "myNewTxtField", you can POST a request as follows:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field-type" : {
"nanme": " nmyNewTxt Fi el d",
"class":"solr. TextField",
"posi tionlncrement Gap": " 100",
"anal yzer" : {
"charFilters":[{
"class":"solr.PatternRepl aceCharFil terFactory",
"repl acenent":"$1$1",
"pattern":"([a-zA-Z])\\\\1+" }],
"t okeni zer":{
"class":"sol r. Wit espaceTokeni zer Factory" 1},
"filters":[{
"class":"solr.WordDelimterFilterFactory",
"preserveOriginal":"0" }]}}
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Note in this example that we have only defined a single analyzer section that will apply to index analysis and

Apache Solr Reference Guide 5.5 74

query analysis. If we wanted to define separate analysis, we would replace the anal yzer section in the above
example with separate sections for i ndexAnal yzer and quer yAnal yzer . As in this example:

curl -X POST -H 'Content-type: application/json'" --data-binary '/{
"add-field-type":{
"nanme": " nyNewText Fi el d",
"class":"solr. TextField",
"i ndexAnal yzer": {

"tokeni zer":{
"class":"sol r. Pat hHi erarchyTokeni zer Fact ory"
"delimter":"/" }},

"queryAnal yzer": {

"tokeni zer":{

"class": "sol r. Keywor dTokeni zer Factory" }}}
}' http://1ocal host:8983/solr/gettingstarted/ schena

Delete a Field Type

The del et e-fi el d-t ype command removes a field type from your schema. If the field type does not exist in
the schema, or if any field or dynamic field rule in the schema uses the field type, an error is thrown.

For example, to delete the field type named "myNewTxtField", you can make a POST request as
follows:

curl -X POST -H ' Content-type: application/json' --data-binary '{
"delete-field-type":{ "name":"myNewTlxt Fi el d" }
}' http://1ocal host:8983/solr/gettingstarted/ schena

Replace a Field Type

The repl ace-fi el d-type command replaces a field type in your schema. Note that you must supply the full
definition for a field type - this command will not partially modify a field type's definition. If the field type does not
exist in the schema an error is thrown.

All of the field type properties available when editing schema. xm by hand are available for use in a POST
request. The structure of the command is a json mapping of the standard field type definition, including the
name, class, index and query analyzer definitions, etc. Details of all of the available options are described in the
section Solr Field Types.

For example, to replace the definition of a field type named "myNewTxtField", you can make a POST request as
follows:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"repl ace-field-type":({

"name": " myNewTxt Fi el d",

"class":"solr. TextField",

"posi tionlncrenment Gap": " 100",

"anal yzer":{

"t okeni zer":{
"class":"sol r. St andar dTokeni zer Factory" }}}

}' http://1ocal host:8983/sol r/gettingstarted/ schema

Apache Solr Reference Guide 5.5 75

Add a New Copy Field Rule

The add- copy-fi el d command adds a new copy field rule to your schema.

The attributes supported by the command are the same as when creating copy field rules by manually editing
the schema. xm , as below:

Name Required Description
source Yes The source field.
dest Yes A field or an array of fields to which the source field will be copied.
maxChars No The upper limit for the number of characters to be copied. The section Copying Fields

has more details.

For example, to define a rule to copy the field "shelf" to the "location" and "catchall” fields, you would POST the
following request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-copy-field":{
"source":"shel f",
"dest":["location", "catchall"]}
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Delete a Copy Field Rule

The del et e- copy-fi el d command deletes a copy field rule from your schema. If the copy field rule does not
exist in the schema an error is thrown.

The sour ce and dest attributes are required by this command.

For example, to delete a rule to copy the field "shelf" to the "location” field, you would POST the following
request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"del ete-copy-field":{ "source":"shelf", "dest":"location" }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Multiple Commands in a Single POST

It is possible to perform one or more add requests in a single command. The API is transactional and all
commands in a single call either succeed or fail together.

The commands are executed in the order in which they are specified. This means that if you want to create a
new field type and in the same request use the field type on a new field, the section of the request that creates
the field type must come before the section that creates the new field. Similarly, since a field must exist for it to
be used in a copy field rule, a request to add a field must come before a request for the field to be used as either
the source or the destination for a copy field rule.

The syntax for making multiple requests supports several approaches. First, the commands can simply be made
serially, as in this request to create a new field type and then a field that uses that type:

Apache Solr Reference Guide 5.5 76

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field-type":{
"name": " myNewTxt Fi el d",
"class":"solr. TextFiel d",
"posi tionlncrenment Gap": " 100",
"anal yzer": {
"charFilters":[{
"class":"solr. PatternRepl aceCharFilterFactory",
"repl acenment": " $1$1",
"pattern":"([a-zA-Z])\\\\1+" }],
"t okeni zer":{
"class": "sol r. Wi t espaceTokeni zer Fact ory" 1},
"filters":[{
"class":"solr.WordDelinmiterFilterFactory",
"preserveOriginal ":"0" }]}},
"add-field" : {
"nanme": "sel | - by",
"type": " myNewTlxt Fi el d",
"stored":true }
}' http://1ocal host:8983/solr/gettingstarted/ schena

Or, the same command can be repeated, as in this example:

curl -X POST -H ' Content-type: application/json'" --data-binary '/{
"add-field":({
"name": "shel f",
"type": " nmyNewTxt Fi el d",
"stored":true },
"add-field":{
"name":"| ocation",
"type": " nmyNewTxt Fi el d",
"stored":true },
"add- copy-field":{
"source":"shel f",
"dest":["location", "catchall"]}
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Finally, repeated commands can be sent as an array:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field":[
{ "name":"shel f",
"type": " myNewTxt Fi el d",
"stored":true },
{ "name":"location",
"type": " myNewTxt Fi el d",
"stored":true }]
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Schema Changes among Replicas

When running in SolrCloud mode, changes made to the schema on one node will propagate to all replicas in the
collection. You can pass the updateTimeoutSecs parameter with your request to set the number of seconds to
wait until all replicas confirm they applied the schema updates. This helps your client application be more robust

Apache Solr Reference Guide 5.5 77

in that you can be sure that all replicas have a given schema change within a defined amount of time. If
agreement is not reached by all replicas in the specified time, then the request fails and the error message will
include information about which replicas had trouble. In most cases, the only option is to re-try the change after
waiting a brief amount of time. If the problem persists, then you'll likely need to investigate the server logs on the
replicas that had trouble applying the changes. If you do not supply an updateTimeoutSecs parameter, the
default behavior is for the receiving node to return immediately after persisting the updates to ZooKeeper. All
other replicas will apply the updates asynchronously. Consequently, without supplying a timeout, your client
application cannot be sure that all replicas have applied the changes.

Retrieve Schema Information

The following endpoints allow you to read how your schema has been defined. You can GET the entire schema,
or only portions of it as needed.

To modify the schema, see the previous section Modify the Schema.

Retrieve the Entire Schema
GET /col |l ection/ schema
INPUT
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters should be added to the API request after '?".

Key Type Required Default Description

wit string No json Defines the format of the response. The options are json, xml or schem
a.xml. If not specified, JSON will be returned by default.

OUTPUT

Output Content

The output will include all fields, field types, dynamic rules and copy field rules, in the format requested (JSON or
XML). The schema name and version are also included.

EXAMPLES

Get the entire schema in JSON.

curl http://1ocal host: 8983/ solr/gettingstarted/ schema?w =j son

Apache Solr Reference Guide 5.5 78

{

"responseHeader": {
"status":0,

" Qri ne": 5},
"schema": {
"nanme": "exanpl e",

"version": 1.5,
"uni queKey":"id",
"fieldTypes":[{
"nanme": "al phaOnl ySort",
"class":"solr. TextFi el d",
"sortM ssingLast": true,
"om t Nornms":true,
"anal yzer": {
"t okeni zer":{
"class":"sol r. Keywor dTokeni zer Factory"},
"filters":[{
"class":"solr.Lower CaseFilterFactory"},
{
"class":"solr.TrinFilterFactory"},
{
"class":"solr. PatternRepl aceFi | terFactory",
"replace":"all",
"replacement":"",

"pattern":"([%a-z])"}]}},

"fields":[{
"nanme":" _version_",
"type":"long",
"i ndexed":true,
"stored":true},

"name": "aut hor",
"type":"text_general ",
"i ndexed": true,
"stored":true},

nane":"cat",
"type":"string",
"mul ti Val ued": true,
"indexed":true,
"stored":true},

"copyFields":[{
"source": "aut hor",
"dest":"text"},

{
"source":"cat",
"dest":"text"},

"source":"content",

"dest":"text"},

"source": "aut hor",
"dest":"author_s"}]}}

Apache Solr Reference Guide 5.5

79

Get the entire schema in XML

curl http://1ocal host:8983/solr/gettingstarted/ schema?wt =xn

<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli me" >5</int >
</[lst>
<l st name="schem">
<str name="nane">exanpl e</str>
<fl oat nane="version">1.5</fl oat >
<str nanme="uni queKey" >i d</str>
<arr name="fiel dTypes">
<l st>
<str name="nane">al phaOnl ySort</str>
<str nanme="cl ass">sol r. Text Fi el d</str>
<bool nanme="sortM ssi nglLast">true</bool >
<bool name="om t Nor ns" >t r ue</ bool >
<l st name="anal yzer">
<l st nanme="t okeni zer">
<str nanme="cl ass">sol r. Keywor dTokeni zer Fact ory</str>
</lst>
<arr name="filters">
<l st>
<str nanme="cl ass">sol r. Lower CaseFi | t er Fact ory</str>
</lst>
<l st >
<str name="class">solr.TrinFilterFactory</str>
</[lst>
<l st>
<str name="cl ass">solr. PatternRepl aceFilterFactory</str>
<str nanme="repl ace">al |l </str>
<str nanme="repl acenent"/>
<str name="pattern">(["a-z])</str>
</lst>
</arr>
</lst>
</lst>

<l st>
<str nanme="source" >aut hor</str>
<str nanme="dest">aut hor_s</str>
</|st>
</arr>
</[lst>
</ response>

Get the entire schema in "schema.xml" format.

curl http://local host:8983/solr/gettingstarted/ schema?w =schena. xni

Apache Solr Reference Guide 5.5

80

<schenma nane="exanpl e" version="1.5">
<uni queKey>i d</ uni queKey>
<types>

<fi el dType nane="al phaOnl ySort" class="solr. TextFi el d* sortM ssi ngLast="true"

om t Nor ms="true">
<anal yzer >

<t okeni zer cl ass="sol r. Keywor dTokeni zer Fact ory"/ >

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.TrinFilterFactory"/>

<filter class="solr.PatternRepl aceFilterFactory" replace="all"

repl acenent="" pattern="(["a-z])"/>
</ anal yzer>
</fieldType>

<copyFi el d source="url" dest="text"/>
<copyFi el d source="price" dest="price_c"/>
<copyFi el d source="aut hor" dest="aut hor_s"/>

</ schenma>

List Fields

GET /coll ection/schenma/fields

GET /col |l ection/schena/fields/fieldname

INPUT

Path Parameters
Key Description

collection = The collection (or core) name.

fieldname The specific fieldname (if limiting request to a single field).

Query Parameters

The query parameters can be added to the API request after a "?".

Key Type Required Default
wit string No json
fl string No (all
fields)
includeDynamic boolean No false

Apache Solr Reference Guide 5.5

Description

Defines the format of the response. The options are json or
xml. If not specified, JSON will be returned by default.

Comma- or space-separated list of one or more fields to
return. If not specified, all fields will be returned by default.

If true, and if the fl query parameter is specified or the field
name path parameter is used, matching dynamic fields are
included in the response and identified with the dynamicBa
se property. If neither the fl query parameter nor the fieldn
ame path parameter is specified, the includeDynamic quer
y parameter is ignored. If false, matching dynamic fields
will not be returned.

81

showDefaults boolean No false If true, all default field properties from each field's field type
will be included in the response (e.g. tokenized for solr.Te
xtField). If false, only explicitly specified field properties will

OUTPUT

Output Content

be included.

The output will include each field and any defined configuration for each field. The defined configuration can vary
for each field, but will minimally include the field nane, the t ype, ifitisi ndexed and ifitis st ored. If nul ti Va
| ued is defined as either true or false (most likely true), that will also be shown. See the section Defining Fields f

or more information about each parameter.

EXAMPLES

Get a list of all fields.

curl http://1ocal host:8983/solr/gettingstarted/ schema/fiel ds?wt =j son

The sample output below has been truncated to only show a few fields.

"fields":

{

[

"i ndexed": true,

"name": " _version_",
"stored": true,
"type": "long"

"i ndexed": true,

"nane": "author",
"stored": true,
"type": "text_general"

"i ndexed": true,
"mul ti Val ued": true,

}H
]

“name": "cat",
"stored": true,
"type": "string"

"responseHeader": {

"QTi me": 1,

"status": O

List Dynamic Fields

CET /col l ecti on/ schema/ dynani cfi el ds

CET /col |l ection/ schema/ dynani cfi el ds/ nane

Apache Solr Reference Guide 5.5

82

INPUT

Path Parameters

Key Description

collection = The collection (or core) name.

name The name of the dynamic field rule (if limiting request to a single dynamic field rule).

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json, xml
. If not specified, JSON will be returned by default.

showDefaults boolean No false If true, all default field properties from each dynamic field's
field type will be included in the response (e.g. tokenized for
solr.TextField). If false, only explicitly specified field
properties will be included.

OUTPUT

Output Content
The output will include each dynamic field rule and the defined configuration for each rule. The defined

configuration can vary for each rule, but will minimally include the dynamic field nane, the t ype, ifitis i ndexed

and if it is st or ed. See the section Dynamic Fields for more information about each parameter.

EXAMPLES

Get a list of all dynamic field declarations:
curl http://1ocal host: 8983/ solr/gettingstarted/ schema/dynam cfi el ds?wt =j son

The sample output below has been truncated.

Apache Solr Reference Guide 5.5

83

"dynam cFi el ds": [

{
"i ndexed": true,
"name": "*_coordi nate",
"stored": false,
"type": "tdoubl e"
IE
{
“mul tiVal ued": true,
"nanme": "ignored_*",
"type": "ignored"
ir
{
"nanme": "random *",
"type": "randonf
[r
{
"i ndexed": true,
"mul ti Val ued": true,
"name": "attr_*",
"stored": true,
"type": "text_general"
iE
{
"indexed": true,
"mul ti Val ued": true,
"name": "* _txt",
"stored": true,
"type": "text_general"
}
e
"responseHeader": {
"Qrime": 1,
"status": O
}

List Field Types

CET /col l ection/schema/fiel dtypes

GET /col |l ection/schema/fi el dtypes/ nane
INPUT
Path Parameters

Key Description
collection = The collection (or core) name.

name The name of the field type (if limiting request to a single field type).

Query Parameters

Apache Solr Reference Guide 5.5

The query parameters can be added to the API request after a "?".

Key Type Required Default Description

wit string No json Defines the format of the response. The options are json or x
ml. If not specified, JSON will be returned by default.

showDefaults boolean No false If true, all default field properties from each field type will be
included in the response (e.g. tokenized for solr.TextField).

If false, only explicitly specified field properties will be
included.

OUTPUT

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can
vary for each type, but will minimally include the field type name and the cl ass. If query or index analyzers,
tokenizers, or filters are defined, those will also be shown with other defined parameters. See the section Solr
Field Types for more information about how to configure various types of fields.

EXAMPLES

Get a list of all field types.

curl http://1ocal host: 8983/ solr/gettingstarted/ schenma/fiel dtypes?w =j son

The sample output below has been truncated to show a few different field types from different parts of the list.

Apache Solr Reference Guide 5.5

85

"fieldTypes": [
{
"anal yzer": {
"class": "solr. Tokeni zer Chai n",
"filters": [
{
"class": "solr.LowerCaseFilterFactory"
Yo
{
"class": "solr.TrinFilterFactory"
bo
{

"class": "solr.PatternRepl aceFilterFactory",
"pattern": "(["a-z])",
"replace": "all",
"repl acenent":
}
Il
"t okeni zer": {
"class": "solr.KeywordTokeni zer Fact ory"
}
'

"class": "solr.TextField",
"dynam cFields": [],
"fields": [1],

"nanme": "al phaOnlySort",
"om t Norns": true,

"sortM ssinglLast": true

"class": "solr.TrieFloatField",
"dynami cFiel ds": [
"x fs",
e g
Il
"fields": [
"price",
"wei ght"
Il
"name": "float",
"posi tionlncrement Gap": "0",
"precisionStep": "0"

}

List Copy Fields

GET /col |l ection/ schenma/ copyfi el ds

INPUT

Path Parameters

Apache Solr Reference Guide 5.5

Key Description
collection = The collection (or core) name.
Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If
not specified, JSON will be returned by default.

source.fl string No (all Comma- or space-separated list of one or more copyField source
source fields to include in the response - copyField directives with all other
fields) source fields will be excluded from the response. If not specified, all
copyField-s will be included in the response.

dest.fl string No (all dest Comma- or space-separated list of one or more copyField dest fields
fields) to include in the response - copyField directives with all other dest

fields will be excluded. If not specified, all copyField-s will be included
in the response.

OUTPUT

Output Content

The output will include the sour ce and dest ination of each copy field rule defined in schera. xni . For more
information about copying fields, see the section Copying Fields.

EXAMPLES

Get a list of all copyfields.

curl http://1local host: 8983/ solr/gettingstarted/ schema/ copyfiel ds?w =j son

The sample output below has been truncated to the first few copy definitions.

Apache Solr Reference Guide 5.5 87

"copyFields": [

{
"dest": "text",
"source": "author"
B
{
"dest": "text",
"source": "cat"
B
{
"dest": "text",
"source": "content"
B
{
"dest": "text",
"source": "content _type"
B

]

"responseHeader": {
"Qrinme": 3,
"status": O

Show Schema Name
GET /col | ecti on/ schenma/ nane
INPUT
Path Parameters
Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wit string No json Defines the format of the response. The options are json or xml. If not
specified, JSON will be returned by default.

OUTPUT

Output Content
The output will be simply the name given to the schema.

EXAMPLES

Get the schema name.

Apache Solr Reference Guide 5.5

88

curl http://1local host: 8983/ solr/gettingstarted/ schema/ nane?w =j son
{
"responseHeader": {
"status":0,
"Qrine": 1},

"nane": "exanpl e"}

Show the Schema Version

GET /col | ection/ schenm/ version

INPUT
Path Parameters
Key Description
collection The collection (or core) hame.
Query Parameters
The query parameters can be added to the API request after a "?".
Description

Key Type Required Default

json Defines the format of the response. The options are json or xml. If not

wit string No
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will simply be the schema version in use.

EXAMPLES

Get the schema version

http://1 ocal host: 8983/ solr/gettingstarted/ schena/ versi on?wt =j son

curl
{
"responseHeader": {
"status": 0,
"Qri me": 2},

"version": 1.5}

List UniqueKey

GET /col | ecti on/ schema/ uni quekey

Apache Solr Reference Guide 5.5

INPUT
Path Parameters
Key Description
collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

Defines the format of the response. The options are json or xml. If not

wit string No json
specified, JSON will be returned by default.

OUTPUT

Output Content
The output will include simply the field name that is defined as the uniqueKey for the index.

EXAMPLES
List the uniqueKey.

http://1 ocal host: 8983/ sol r/ gettingstarted/ schenma/ uni quekey?w =j son

curl
{
"responseHeader": {
"status":O0,
"Qrinme": 2},

"uni queKey": "id"}

Show Global Similarity

CET /collection/schema/simlarity

INPUT
Path Parameters
Key Description

collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description
Defines the format of the response. The options are json or xml. If not

wt string No json
specified, JSON will be returned by default.

Apache Solr Reference Guide 5.5

90

OUTPUT

Output Content
The output will include the class name of the global similarity defined (if any).

EXAMPLES
Get the similarity implementation.

http://1 ocal host: 8983/ solr/gettingstarted/ schena/simlarity?wt=json

curl
{
"responseHeader": {
"status":0,
"Qrine": 1},

"simlarity":{
"class":"org. apache. solr.search.sinmlarities.DefaultSimlarityFactory"}}

Get the Default Query Operator

CET /col l ection/ schema/ sol rquer ypar ser/ def aul t oper at or

INPUT
Path Parameters
Key Description
collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

Defines the format of the response. The options are json or xml. If not

wit string No json
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will include simply the default operator if none is defined by the user.
EXAMPLES

Get the default operator.

curl
http://1 ocal host:8983/solr/gettingstarted/ schema/sol rqueryparser/defaul toperator ?wt =

j son

Apache Solr Reference Guide 5.5 91

{

"responseHeader": {
"status":0,

"Qri ne": 2},
"defaul t Operator":"OR"}

Manage Resource Data

The Managed Resources REST API provides a mechanism for any Solr plugin to expose resources that should
support CRUD (Create, Read, Update, Delete) operations. Depending on what Field Types and Analyzers are
configured in your Schema, additional / scherma/ REST API paths may exist. See the Managed Resources secti

on for more information and examples.

Putting the Pieces Together

At the highest level, schenma. xm is structured as follows. This example is not real XML, but it gives you an idea
of the structure of the file.

<schenma>
<types>
<fiel ds>
<uni queKey>
<copyFi el d>
</ schema>

Obviously, most of the excitementisint ypes and f i el ds, where the field types and the actual field definitions
live. These are supplemented by copyFi el ds. The uni queKey must always be defined. In older Solr versions
you would find def aul t Sear chFi el d and sol r Quer yPar ser tags as well, but although these still work they
are deprecated and discouraged, see Other Schema Elements.

G) Types and fields are optional tags
Note that the t ypes and f i el ds sections are optional, meaning you are free to mix f i el d, dynami cF

i el d, copyFi el dandfi el dType definitions on the top level. This allows for a more logical grouping
of related tags in your schema.

Choosing Appropriate Numeric Types
For general numeric needs, use Tri el nt Fi el d, Tri eLongFi el d, Tri eFl oat Fi el d, and Tri eDoubl eFi el
d with pr eci si onSt ep="0".

If you expect users to make frequent range queries on humeric types, use the default pr eci si onSt ep (by not
specifying it) or specify it as pr eci si onSt ep="8" (which is the default). This offers faster speed for range
gueries at the expense of increasing index size.

Working With Text

Apache Solr Reference Guide 5.5 92

Handling text properly will make your users happy by providing them with the best possible results for text
searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not sophisticated about
their searches and the most common search is likely to be a simple keyword search. You can use copyFi el d to
take a variety of fields and funnel them all into a single text field for keyword searches. In the schema.xml file for
the "t echpr oduct s" example included with Solr, copyFi el d declarations are used to dump the contents of ca
t, nane, manu, f eat ur es, and i ncl udes into a single field, t ext . In addition, it could be a good idea to copy

| Dinto t ext in case users wanted to search for a particular product by passing its product number to a keyword
search.

Another technique is using copyFi el d to use the same field in different ways. Suppose you have a field that is
a list of authors, like this:

Schildt, Herbert; Wl pert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out punctuation:
schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:
schildt herbert wolpert |lewis davies p

Finally, for faceting, use the primary author only via a St ri ngFi el d:

Schil dt, Herbert

Related Topics

® SchemaXML

DocValues

DocValues are a way of recording field values internally that is more efficient for some purposes, such as sorting
and faceting, than traditional indexing.

Why DocValues?

The standard way that Solr builds the index is with an inverted index. This style builds a list of terms found in all
the documents in the index and next to each term is a list of documents that the term appears in (as well as how
many times the term appears in that document). This makes search very fast - since users search by terms,
having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this
approach is not very efficient. The faceting engine, for example, must look up each term that appears in each
document that will make up the result set and pull the document IDs in order to build the facet list. In Solr, this is
maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a
document-to-value mapping built at index time. This approach promises to relieve some of the memory
requirements of the fieldCache and make lookups for faceting, sorting, and grouping much faster.

Enabling DocValues

To use docValues, you only need to enable it for a field that you will use it with. As with all schema design, you
need to define a field type and then define fields of that type with docValues enabled. All of these actions are

Apache Solr Reference Guide 5.5 93

http://wiki.apache.org/solr/SchemaXml

done in schema. xni .

Enabling a field for docValues only requires adding docVal ues="t r ue" to the field (or field type) definition, as
in this example from the schena. xml of Solr's sanpl e_t echpr oduct s_confi gs config set:

<field nanme="nanu_exact" type="string" indexed="fal se" stored="fal se"
docVal ues="true" />

1. If you have already indexed data into your Solr index, you will need to completely re-index your content
after changing your field definitions in schema. xmi in order to successfully use docValues.

DocValues are only available for specific field types. The types chosen determine the underlying Lucene
docValue type that will be used. The available Solr field types are:

® StrFieldand UU DFi el d.
® |f the field is single-valued (i.e., multi-valued is false), Lucene will use the SORTED type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.

® Any Tri e* numeric fields and Enunti el d.
® |f the field is single-valued (i.e., multi-valued is false), Lucene will use the NUMERIC type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.

These Lucene types are related to how the values are sorted and stored.

There are two implications of multi-valued DocValues being stored as SORTED_SET types that should be kept
in mind when combined with /export (and, by extension Streaming Aggregation-based funcitonality):

1. Values are returned in sorted order rather than the original input order.
2. If multiple, identical entries are in the field in a single document, only one will be returned for that
document.

There is an additional configuration option available, which is to modify the docVal uesFor nat used by the field
type. The default implementation employs a mixture of loading some things into memory and keeping some on
disk. In some cases, however, you may choose to specify an alternative DocValuesFormat implementation. For
example, you could choose to keep everything in memory by specifying docVal uesFor mat =" Menor y" on a
field type:

<fi el dType nane="string_in_nemdv" class="solr.StrField" docVal ues="true"
docVal uesFor mat =" Menory" />

Please note that the docVal uesFor mat option may change in future releases.

(D Lucene index back-compatibility is only supported for the default codec. If you choose to customize the d
ocVal uesFor mat in your schema.xml, upgrading to a future version of Solr may require you to either
switch back to the default codec and optimize your index to rewrite it into the default codec before
upgrading, or re-build your entire index from scratch after upgrading.

Using DocValues

Sorting & Functions

If docVal ues="true" for afield, then DocValues will automatically be used any time the field is used for sortin
g or in Function Queries.

Apache Solr Reference Guide 5.5 94

https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-docValuesFormat
https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-docValuesFormat
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/codecs/DocValuesFormat.html
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter

Retrieving DocValues During Search

Field values retrieved during search queries are typically returned from stored values. However, non-stored
docValues fields will be also returned along with other stored fields when all fields (or pattern matching globs) are
specified to be returned (e.g. "f | =*") for search queries depending on the effective value of the useDocVal ues
As St or ed parameter for each field. For schema versions >= 1.6, the implicit default is useDocVal uesAs St or
ed="true". See Field Type Definitions and Properties & Defining Fields for more details.

When useDocVal uesAsSt or ed="f al se", non-stored DocValues fields can still be explicitly requested by
name in the fl param, but will not match glob patterns (" *").

Note that returning DocValues fields at query time has performance implications that stored fields may not
because DocValues are column-oriented and may therefore incur additional cost to retrieve for each returned
document. Also note that while returning non-stored fields from DocValues, the values of a multi-valued field are
returned in sorted order (and not insertion order). If you require the multi-valued fields to be returned in the
original insertion order, then make your multi-valued field as stored (such a change requires re-indexing).

Schemaless Mode

Schemaless Mode is a set of Solr features that, when used together, allow users to rapidly construct an effective
schema by simply indexing sample data, without having to manually edit the schema. These Solr features, all
specified in sol rconfi g. xm , are:

1. Managed schema: Schema modifications are made through Solr APIs rather than manual edits - see Man
aged Schema Definition in SolrConfig.

2. Field value class guessing: Previously unseen fields are run through a cascading set of value-based
parsers, which guess the Java class of field values - parsers for Boolean, Integer, Long, Float, Double,
and Date are currently available.

3. Automatic schema field addition, based on field value class(es): Previously unseen fields are added to the
schema, based on field value Java classes, which are mapped to schema field types - see Solr Field
Types.

Using the Schemaless Example

The three features of schemaless mode are pre-configured in the dat a_dr i ven_schena_confi gs config set i
n the Solr distribution. To start an example instance of Solr using these configs, run the following command:

bin/solr start -e schenml ess

This will launch a Solr server, and automatically create a collection (named "get t i ngst ar t ed") that contains
only three fields in the initial schema: i d, _versi on_,and _text .

You can use the / schena/ fi el ds Schema API to confirm this: cur| http://I ocal host: 8983/ sol r/ get
tingstarted/ schenma/fiel ds will output:

Apache Solr Reference Guide 5.5 95

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter

{

"responseHeader": {
"status":0,
"Qrine": 1},

"fields":[{
"name":"_text_",
"type":"text_general ",
"mul tiVal ued":true,

"i ndexed":true,
"stored":fal se},

{
"nanme":" _version_ ",
"type":"long",
"i ndexed":true,
"stored":true},

{

"name":"id",
"type":"string",

"mul ti Val ued": f al se,
"indexed":true,
"required":true,
"stored":true,

"uni queKey":true}]}

1. Because the dat a_dri ven_schema_confi gs config set includes a copyFi el d directive that causes
all content to be indexed in a predefined "catch-all" _t ext _field, to enable single-field search that
includes all fields' content, the index will be larger than it would be without the copyFi el d. When you
nail down your schema, consider removing the _t ext _ field and the corresponding copyFi el d directiv
e if you don't need it.

Configuring Schemaless Mode

As described above, there are three configuration elements that need to be in place to use Solr in schemaless
mode. In the dat a_dri ven_schema_conf i gs config set included with Solr these are already configured. If,
however, you would like to implement schemaless on your own, you should make the following changes.

Enable Managed Schema

As described in the section Managed Schema Definition in SolrConfig, changing the schenmaFact or y will allow
the schema to be modified by the Schema API. Your sol r confi g. xm should have a section like the one
below (and the ClassicindexSchemaFactory should be commented out or removed).

<schemaFact ory cl ass="Managedl ndexSchemaFact ory" >
<bool nane="nut abl e">true</ bool >
<str name="nmanagedSchemaResour ceNane" >managed- schema</ str>
</ schenmaFact or y>

Define an UpdateRequestProcessorChain

The UpdateRequestProcessorChain allows Solr to guess field types, and you can define the default field type
classes to use. To start, you should define it as follows (see the javadoc links below for update processor factory

Apache Solr Reference Guide 5.5 96

documentation):

Apache Solr Reference Guide 5.5

97

<updat eRequest Pr ocessor Chai n nane="add- unknown-fi el ds-to-the-schem" >
<!'-- UU DUpdat eProcessor Factory will generate an id if none is present in the
i ncom ng docunent -->
<processor class="sol r.UU DUpdat eProcessor Factory" />
<processor class="solr.LogUpdat eProcessorFactory"/>
<processor class="solr.DistributedUpdat eProcessorFactory"/>
<processor class="solr.RenmoveBl ankFi el dUpdat ePr ocessor Factory"/>
<processor class="solr.Fi el dNameMut at i ngUpdat ePr ocessor Fact ory" >
<str name="pattern">[Mw\.]</str>
<str name="repl acenent">_</str>
</ processor >
<processor class="solr.ParseBool eanFi el dUpdat ePr ocessor Fact ory"/ >
<processor class="solr. ParselLongFi el dUpdat eProcessor Factory"/>
<processor class="sol r. ParseDoubl eFi el dUpdat eProcessor Factory"/>
<processor class="solr. ParseDat eFi el dUpdat ePr ocessor Fact ory" >
<arr name="format">
<str>yyyy- Mt dd' T' HH: nm ss. SSSZ</ st r >
<str>yyyy- Mt dd' T' HH: mm ss, SSSZ</ st r >
<str>yyyy- MMt dd' T' HH: nm ss. SSS</ str>
<str>yyyy-Mvidd' T' HH. nm ss, SSS</ str>
<str>yyyy- Mt dd' T' HH: nm ssZ</str >
<str>yyyy- Mt dd' T' HH: nm ss</str>
<str>yyyy- MM dd' T' HH: nmiz</ str >
<str>yyyy- Mt dd' T' HH: </ str >
<str>yyyy- MMt dd HH: mm ss. SSSZ</ str >
<str>yyyy- MMt dd HH: mm ss, SSSZ</ st r >
<str>yyyy- Mt dd HH: mm ss. SSS</ st r >
<str>yyyy- Mt dd HH nm ss, SSS</str>
<str>yyyy- Mt dd HH mm ssZ</str>
<str>yyyy- Mt dd HH nm ss</str>
<str>yyyy- Mt dd HH m¥</str>
<str>yyyy- Mt dd HH mmx/str>
<str>yyyy- Mt dd</str>
</arr>
</ processor >
<processor class="solr.AddSchenmaFi el dsUpdat ePr ocessor Fact ory" >
<str nanme="defaul tFi el dType">strings</str>
<l st name="typeMappi ng" >
<str nanme="val ued ass">j ava. | ang. Bool ean</str>
<str nanme="fiel dType">bool eans</str>
</[lst>
<l st name="typeMappi ng" >
<str nanme="val ueC ass">j ava. util.Date</str>
<str name="fiel dType">t dates</str>
</[lst>
<l st name="typeMappi ng" >
<str nanme="val ueCd ass">j ava. | ang. Long</ str>
<str nane="val ueC ass">j ava. |l ang. | nteger</str>
<str name="fiel dType">tl ongs</str>
</[lst>
<l st name="typeMappi ng" >
<str nane="val ueC ass">j ava. | ang. Nunber </ str>
<str name="fiel dType" >t doubl es</str>
</[lst>
</ processor >
<processor class="solr.RunUpdat eProcessor Factory"/>
</ updat eRequest Pr ocessor Chai n>

Apache Solr Reference Guide 5.5

Javadocs for update processor factories mentioned above:

UUIDUpdateProcessorFactory
RemoveBlankFieldUpdateProcessorFactory
FieldNameMutatingUpdateProcessorFactory
ParseBooleanFieldUpdateProcessorFactory
ParseLongFieldUpdateProcessorFactory
ParseDoubleFieldUpdateProcessorFactory
ParseDateFieldUpdateProcessorFactory
AddSchemaFieldsUpdateProcessorFactory

Make the UpdateRequestProcessorChain the Default for the UpdateRequestHandler

Once the UpdateRequestProcessorChain has been defined, you must instruct your UpdateRequestHandlers to
use it when working with index updates (i.e., adding, removing, replacing documents). Here is an example using
InitParams to set the defaults on all / updat e request handlers:

<i ni t Paranms pat h="/update/**">
<l st nanme="defaul ts">
<str nanme="updat e. chai n">add- unknown-fi el ds-to-t he-schenma</str>
</l|st>
</i ni t Par ans>

1. After each of these changes have been made, Solr should be restarted (or, you can reload the cores to
load the new sol rconfi g. xm definitions).

Examples of Indexed Documents

Once the schemaless mode has been enabled (whether you configured it manually or are using dat a_dri ven_
schema_confi gs), documents that include fields that are not defined in your schema should be added to the
index, and the new fields added to the schema.

For example, adding a CSV document will cause its fields that are not in the schema to be added, with
fieldTypes based on values:

curl "http://local host: 8983/ solr/gettingstarted/ update?conmit=true" -H
"Content-type: application/csv" -d

id, Artist, Al bum Rel eased, Rati ng, FronDi st ri butor, Sol d

44C, A d Shews, Mead for Wal ki ng, 1988-08-13, 0. 01, 14, 0

Output indicating success:

<r esponse>
<l st name="r esponseHeader"><i nt nane="st atus">0</i nt ><i nt

name="Qri me" >106</i nt ></| st >

</ response>

The fields now in the schema (output from cur|l http://| ocal host: 8983/ sol r/ gettingstarted/sche
ma/fields):

Apache Solr Reference Guide 5.5 99

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/UUIDUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/RemoveBlankFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/FieldNameMutatingUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseBooleanFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseLongFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseDoubleFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseDateFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/AddSchemaFieldsUpdateProcessorFactory.html

{

"responseHeader": {

"status":0,
"Qrime": 1},
"fields":[{
"nanme": " Al bunt,
"type":"strings"}, /'l Field value guessed as String -> strings fieldType
{
"name":"Artist",
"type":"strings"}, /'l Field value guessed as String -> strings fieldType
{
"name": " FronDi stri butor”,
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fieldType
{
"nanme":"Rating",
"type":"tdoubl es"}, /1l Field val ue guessed as Double -> tdoubles fieldType
{
"nanme": " Rel eased",
"type":"tdates"}, /1 Field value guessed as Date -> tdates fiel dType
{
"nanme": " Sol d",
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fiel dType
{
"name":" _text_ ",
Bo
{
"nanme":" _version_ ",
Bo
{
"name":"id",
1}

(¥) You Can Still Be Explicit
Even if you want to use schemaless mode for most fields, you can still use the Schema API to
pre-emptively create some fields, with explicit types, before you index documents that use them.

Internally, the Schema REST API and the Schemaless Update Processors both use the same Managed
Schema functionality.

Once a field has been added to the schema, its field type is fixed. As a consequence, adding documents with
field value(s) that conflict with the previously guessed field type will fail. For example, after adding the above

document, the "Sol d" field has the fieldType t | ongs, but the document below has a non-integral decimal
value in this field:

curl "http://local host:8983/solr/gettingstarted/ update?conm t=true" -H
"Content-type: application/csv" -d '

i d, Descri ption, Sol d

19F, Cassettes by the pound, 4. 93"

This document will fail, as shown in this output:

Apache Solr Reference Guide 5.5 100

<response>
<l st nanme="responseHeader" >
<i nt name="stat us">400</i nt >
<int name="Qri ne">7</int >
</lst>
<l st name="error">
<str name="nmsg">ERROR [doc=19F] Error adding field 'Sold = 4.93" nsg=For input
string: "4.93"</str>
<i nt name="code">400</i nt >
</lst>
</ response>

Apache Solr Reference Guide 5.5 101

Understanding Analyzers, Tokenizers, and Filters

The following sections describe how Solr breaks down and works with textual data. There are three main
concepts to understand: analyzers, tokenizers, and filters.

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An analyzer
examines the text of fields and generates a token stream. Analyzers may be a single class or they may be
composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or tokens.

Filters examine a stream of tokens and keep them, transform or discard them, or create new ones. Tokenizers
and filters may be combined to form pipelines, or chains, where the output of one is input to the next. Such a
sequence of tokenizers and filters is called an analyzer and the resulting output of an analyzer is used to match
query results or build indices.

Using Analyzers, Tokenizers, and Filters

Although the analysis process is used for both indexing and querying, the same analysis process need not be
used for both operations. For indexing, you often want to simplify, or normalize, words. For example, setting all
letters to lowercase, eliminating punctuation and accents, mapping words to their stems, and so on. Doing so
can increase recall because, for example, "ram", "Ram" and "RAM" would all match a query for "ram". To
increase query-time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap
acronyms if you're interested in male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or terms, of that field and are used either to build an
index of those terms when a new document is added, or to identify which documents contain the terms you are
querying for.

For More Information

These sections will show you how to configure field analyzers and also serves as a reference for the details of
configuring each of the available tokenizer and filter classes. It also serves as a guide so that you can configure
your own analysis classes if you have special needs that cannot be met with the included filters or tokenizers.

For Analyzers, see:

® Analyzers: Detailed conceptual information about Solr analyzers.
® Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

For Tokenizers, see:

® About Tokenizers: Detailed conceptual information about Solr tokenizers.
® Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes included in
this distribution of Solr.

For Filters, see:

® About Filters: Detailed conceptual information about Solr filters.

® Filter Descriptions: Information about configuring filters, and about the filter factory classes included in this
distribution of Solr.

® CharFilterFactories: Information about filters for pre-processing input characters.

To find out how to use Tokenizers and Filters with various languages, see:

® |anguage Analysis: Information about tokenizers and filters for character set conversion or for use with
specific languages.

Apache Solr Reference Guide 5.5 102

Analyzers

An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a child of the <
fi el dType> element in the schena. xm configuration file (in the same conf/ directory as sol rconfi g. xnl)

In normal usage, only fields of type sol r. Text Fi el d will specify an analyzer. The simplest way to configure an
analyzer is with a single <anal yzer > element whose class attribute is a fully qualified Java class hame. The
named class must derive from or g. apache. | ucene. anal ysi s. Anal yzer . For example:

<fi el dType nane="nanetext" class="solr.TextField">
<anal yzer cl ass="org. apache. | ucene. anal ysi s. core. Wi t espaceAnal yzer"/ >
</fieldType>

In this case a single class, Whi t espaceAnal yzer , is responsible for analyzing the content of the named text
field and emitting the corresponding tokens. For simple cases, such as plain English prose, a single analyzer
class like this may be sufficient. But it's often necessary to do more complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete, relatively
simple processing steps. As you will soon discover, the Solr distribution comes with a large selection of
tokenizers and filters that covers most scenarios you are likely to encounter. Setting up an analyzer chain is very
straightforward; you specify a simple <anal yzer > element (no class attribute) with child elements that name
factory classes for the tokenizer and filters to use, in the order you want them to run.

For example:

<fi el dType nane="nanetext" class="solr. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

Note that classes in the or g. apache. sol r. anal ysi s package may be referred to here with the shorthand so
I r. prefix.

In this case, no Analyzer class was specified on the <anal yzer > element. Rather, a sequence of more
specialized classes are wired together and collectively act as the Analyzer for the field. The text of the field is
passed to the first item in the list (sol r. St andar dTokeni zer Fact or y), and the tokens that emerge from the
last one (sol r. Engl i shPorterFil t er Fact ory) are the terms that are used for indexing or querying any
fields that use the "nametext" fi el dType.

1. Field Values versus Indexed Terms
The output of an Analyzer affects the terms indexed in a given field (and the terms used when parsing
gueries against those fields) but it has no impact on the stored value for the fields. For example: an
analyzer might split "Brown Cow" into two indexed terms "brown" and "cow", but the stored value will still
be a single String: "Brown Cow"

Apache Solr Reference Guide 5.5 103

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream that results
from analysis is added to an index and defines the set of terms (including positions, sizes, and so on) for the
field. At query time, the values being searched for are analyzed and the terms that result are matched against
those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you want to query
for exact string matches, possibly with case-insensitivity, for example. In other cases, you may want to apply
slightly different analysis steps during indexing than those used at query time.

If you provide a simple <anal yzer > definition for a field type, as in the examples above, then it will be used for
both indexing and queries. If you want distinct analyzers for each phase, you may include two <anal yzer > defi
nitions distinguished with a type attribute. For example:

<fiel dType nane="nanetext" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>
<filter class="solr.SynonynFilterFactory" synonyns="syns.txt"/>
</ anal yzer>
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer>
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase, any that are not
listed in keepwor ds. t xt are discarded and those that remain are mapped to alternate values as defined by the
synonym rules in the file syns. t xt . This essentially builds an index from a restricted set of possible values and
then normalizes them to values that may not even occur in the original text.

At query time, the only normalization that happens is to convert the query terms to lowercase. The filtering and
mapping steps that occur at index time are not applied to the query terms. Queries must then, in this example, be
very precise, using only the normalized terms that were stored at index time.

About Tokenizers

The job of a tokenizer is to break up a stream of text into tokens, where each token is (usually) a sub-sequence
of the characters in the text. An analyzer is aware of the field it is configured for, but a tokenizer is not.
Tokenizers read from a character stream (a Reader) and produce a sequence of Token objects (a
TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They may also be
added to or replaced, such as mapping aliases or abbreviations to normalized forms. A token contains various
metadata in addition to its text value, such as the location at which the token occurs in the field. Because a
tokenizer may produce tokens that diverge from the input text, you should not assume that the text of the token is
the same text that occurs in the field, or that its length is the same as the original text. It's also possible for more
than one token to have the same position or refer to the same offset in the original text. Keep this in mind if you
use token metadata for things like highlighting search results in the field text.

Apache Solr Reference Guide 5.5 104

<fiel dType nane="text" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer>
</fieldType>

The class named in the tokenizer element is not the actual tokenizer, but rather a class that implements the Tok
eni zer Fact ory API. This factory class will be called upon to create new tokenizer instances as needed.
Objects created by the factory must derive from Tokeni zer, which indicates that they produce sequences of
tokens. If the tokenizer produces tokens that are usable as is, it may be the only component of the analyzer.
Otherwise, the tokenizer's output tokens will serve as input to the first filter stage in the pipeline.

A TypeTokenFi | t er Fact ory is available that creates a TypeTokenFi | t er that filters tokens based on their
TypeAttribute, which is setin f act ory. get St opTypes.

For a complete list of the available TokenFilters, see the section Tokenizers.

When To use a CharFilter vs. a TokenFilter

There are several pairs of CharFilters and TokenFilters that have related (ie: Mappi ngChar Fi | t er and ASCI | F
ol di ngFi | t er) or nearly identical (ie: Patt er nRepl aceCharFi | t er Fact ory and Patt er nRepl aceFil te
r Fact or y) functionality and it may not always be obvious which is the best choice.

The decision about which to use depends largely on which Tokenizer you are using, and whether you need to
preprocess the stream of characters.

For example, suppose you have a tokenizer such as St andar dTokeni zer and although you are pretty happy
with how it works overall, you want to customize how some specific characters behave. You could modify the
rules and re-build your own tokenizer with JFlex, but it might be easier to simply map some of the characters
before tokenization with a Char Fi | t er.

About Filters

Like tokenizers, filters consume input and produce a stream of tokens. Filters also derive from or g. apache. | u
cene. anal ysi s. TokenSt r eam Unlike tokenizers, a filter's input is another TokenStream. The job of a filter is
usually easier than that of a tokenizer since in most cases a filter looks at each token in the stream sequentially

and decides whether to pass it along, replace it or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once, although this is
less common. One hypothetical use for such a filter might be to normalize state names that would be tokenized
as two words. For example, the single token "california" would be replaced with "CA", while the token pair
"rhode" followed by "island" would become the single token "RI".

Because filters consume one TokenSt r eamand produce a new TokenSt r eam they can be chained one after
another indefinitely. Each filter in the chain in turn processes the tokens produced by its predecessor. The order
in which you specify the filters is therefore significant. Typically, the most general filtering is done first, and later
filtering stages are more specialized.

Apache Solr Reference Guide 5.5 105

<fiel dType nane="text" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those tokens then
pass through Solr's standard filter, which removes dots from acronyms, and performs a few other common
operations. All the tokens are then set to lowercase, which will facilitate case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A stemmer is
basically a set of mapping rules that maps the various forms of a word back to the base, or stem, word from
which they derive. For example, in English the words "hugs", "hugging" and "hugged" are all forms of the stem
word "hug". The stemmer will replace all of these terms with "hug", which is what will be indexed. This means
that a query for "hug" will match the term "hugged", but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms, like "hugging",
to match documents with different variations of the same stem word, such as "hugged". This works because both
the indexer and the query will map to the same stem ("hug").

Word stemming is, obviously, very language specific. Solr includes several language-specific stemmers created
by the Snowball generator that are based on the Porter stemming algorithm. The generic Snowball Porter
Stemmer Filter can be used to configure any of these language stemmers. Solr also includes a convenience
wrapper for the English Snowball stemmer. There are also several purpose-built stemmers for non-English
languages. These stemmers are described in Language Analysis.

Tokenizers

You configure the tokenizer for a text field type in schema. xm with a <t okeni zer > element, as a child of <an
al yzer>:

<fiel dType nane="text" class="solr.TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed. Tokenizer factory
classes implement the or g. apache. sol r. anal ysi s. Tokeni zer Fact or y. A TokenizerFactory's cr eat e()
method accepts a Reader and returns a TokenStream. When Solr creates the tokenizer it passes a Reader
object that provides the content of the text field.

Apache Solr Reference Guide 5.5 106

http://snowball.tartarus.org/

Tokenizers discussed in this section:
Standard Tokenizer

Classic Tokenizer

Keyword Tokenizer

Letter Tokenizer

Lower Case Tokenizer
N-Gram Tokenizer

Edge N-Gram Tokenizer

ICU Tokenizer

Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer
Related Topics

Arguments may be passed to tokenizer factories by setting attributes on the <t okeni zer > element.

<fiel dType nane="senicol onDel im ted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer class="solr. PatternTokeni zer Factory" pattern="; "/>
</ anal yzer >
</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token, including Internet domain
names.

® The "@" character is among the set of token-splitting punctuation, so email addresses are not preserved
as single tokens.

Note that words are split at hyphens.

The Standard Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following token
types: <ALPHANUM>, <NUM>, <SOQUTHEAST_ASI AN>, <| DEOGRAPHI C>, and <HI RAGANA>.

Factory class: sol r. St andar dTokeni zer Fact ory
Arguments:

maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
maxTokenLengt h.

Example:

<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe", "foo.com", "by", "03", "09", "re", "m37", "xq"

Apache Solr Reference Guide 5.5 107

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://unicode.org/reports/tr29/#Word_Boundaries

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1 and
previous. It does not use the Unicode standard annex UAX#29 word boundary rules that the Standard Tokenizer
uses. This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and
the numbers and hyphen(s) are preserved.

® Recognizes Internet domain names and email addresses and preserves them as a single token.
Factory class: sol r. C assi cTokeni zer Fact ory
Arguments:

maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
maxTokenLengt h.

Example:
<anal yzer >

<t okeni zer cl ass="solr.d assi cTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe@foo.com", "by", "03-09", "re

, "'Mm37-Xq

Keyword Tokenizer

This tokenizer treats the entire text field as a single token.
Factory class: sol r. Keywor dTokeni zer Fact ory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Letter Tokenizer

This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter characters.
Factory class: sol r. Lett er Tokeni zer Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 5.5 108

http://unicode.org/reports/tr29/#Word_Boundaries

<anal yzer >
<t okeni zer cl ass="solr.LetterTokenizerFactory"/>
</ anal yzer >

In: "l can't."

out: "I", "can”, "t"

Lower Case Tokenizer

Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase. Whitespace
and non-letters are discarded.

Factory class: sol r. Lower CaseTokeni zer Fact ory
Arguments: None
Example:

<anal yzer>

<t okeni zer cl ass="sol r. Lower CaseTokeni zer Factory"/ >
</ anal yzer >

In: "l just LOVE my iPhone!"

Out: "i", "just", "love", "my", "iphone"

N-Gram Tokenizer

Reads the field text and generates n-gram tokens of sizes in the given range.

Factory class: sol r. NG anifokeni zer Fact ory

Arguments:

nm nG anfi ze: (integer, default 1) The minimum n-gram size, must be > 0.

max G ansi ze: (integer, default 2) The maximum n-gram size, must be >= ni nG anfti ze.

Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field at whitespace.

As a result, the space character is included in the encoding.

<anal yzer>
<t okeni zer class="sol r. NG anfTokeni zer Factory"/>
</ anal yzer >

In: "hey man"
Out: "h", "e", "y", " ", "m", "a", "n", "he", "ey", "y ", " m", "ma", "an"
Example:

With an n-gram size range of 4 to 5:

Apache Solr Reference Guide 5.5 109

<anal yzer >
<t okeni zer cl ass="sol r. NG anTTokeni zer Factory" m nG anfSi ze="4" maxG antSi ze="5"/>
</ anal yzer >

In: "bicycle"

Out: "bicy", "bicyc", "icyc", "icycl”, "cycl", "cycle", "ycle"

Edge N-Gram Tokenizer

Reads the field text and generates edge n-gram tokens of sizes in the given range.

Factory class: sol r. EdgeNG amTokeni zer Fact ory

Arguments:

m nG ansi ze: (integer, default is 1) The minimum n-gram size, must be > 0.

maxG ansi ze: (integer, default is 1) The maximum n-gram size, must be >= ni nGr anti ze.

si de: ("front" or "back”, default is "front") Whether to compute the n-grams from the beginning (front) of the text
or from the end (back).

Example:
Default behavior (min and max default to 1):
<anal yzer>

<t okeni zer cl ass="sol r. EdgeNG anifokeni zer Fact ory"/ >
</ anal yzer>

In: "babaloo”
Out: "b"
Example:
Edge n-gram range of 2to 5
<anal yzer >
<t okeni zer cl ass="sol r. EdgeNG anifokeni zer Fact ory" m nG anfSi ze="2"

maxG& antSi ze="5"/ >
</ anal yzer >

In: "babaloo”
Out:"ba", "bab", "baba", "babal"

Example:

Edge n-gram range of 2 to 5, from the back side:

<anal yzer>

<t okeni zer cl ass="sol r. EdgeNG anfTokeni zer Fact ory" m nG anfi ze="2" maxG anSi ze="5"
si de="back"/ >
</ anal yzer >

In: "babaloo"

Apache Solr Reference Guide 5.5 110

Out: "o0",

loo", "aloo", "baloo"

ICU Tokenizer

This tokenizer processes multilingual text and tokenizes it appropriately based on its script attribute.

You can customize this tokenizer's behavior by specifying per-script rule files. To add per-script rules, add a r ul
ef i | es argument, which should contain a comma-separated list of code: r ul ef i | e pairs in the following
format: four-letter ISO 15924 script code, followed by a colon, then a resource path. For example, to specify rules
for Latin (script code "Latn") and Cyrillic (script code "Cyrl"), you would enter Lat n: ny. Lati n. rul es. rbbi, C
yrl:my.Cyrillic.rules.rbbi.

The default sol r. | CUTokeni zer Fact or y provides UAX#29 word break rules tokenization (like sol r. St and
ardTokeni zer), but also includes custom tailorings for Hebrew (specializing handling of double and single
guotation marks), and for syllable tokenization for Khmer, Lao, and Myanmar.

Factory class: sol r. | CUTokeni zer Fact ory
Arguments:

rul efi | e: a comma-separated list of code: rul ef i | e pairs in the following format: four-letter ISO 15924 script
code, followed by a colon, then a resource path.

Example:
<anal yzer>
<l-- no custom zation -->

<t okeni zer class="sol r.|CUTokeni zer Factory"/>
</ anal yzer >

<anal yzer >
<t okeni zer cl ass="solr. | CUTokeni zer Fact ory"
rulefiles="Latn:ny.Latin.rules.rbbi,Cyrl:my.Cyrillic.rules.rbbi"/>
</ anal yzer>

Path Hierarchy Tokenizer

This tokenizer creates synonyms from file path hierarchies.
Factory class: sol r. Pat hHi er ar chyTokeni zer Fact ory
Arguments:

del i mi t er: (character, no default) You can specify the file path delimiter and replace it with a delimiter you
provide. This can be useful for working with backslash delimiters.

r epl ace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

Apache Solr Reference Guide 5.5 111

http://userguide.icu-project.org/boundaryanalysis#TOC-RBBI-Rules

<fiel dType nane="text _path" class="solr. TextFi el d" positionlncrenmentGp="100">
<anal yzer >
<t okeni zer cl ass="sol r. Pat hHi erarchyTokeni zer Factory" delimter="\"
repl ace="/"/>
</ anal yzer >
</fieldType>

In: "c:\usn\local\apache"

Out: "c:", "c:/usr, "c:/usr/local", "c:/usr/local/apache”

Regular Expression Pattern Tokenizer

This tokenizer uses a Java regular expression to break the input text stream into tokens. The expression
provided by the pattern argument can be interpreted either as a delimiter that separates tokens, or to match
patterns that should be extracted from the text as tokens.

See the Javadocs for j ava. uti | . regex. Pat t er n for more information on Java regular expression syntax.
Factory class: sol r. Patt er nTokeni zer Fact ory

Arguments:

pat t er n: (Required) The regular expression, as defined by inj ava. util . regex. Pattern.

gr oup: (Optional, default -1) Specifies which regex group to extract as the token(s). The value -1 means the

regex should be treated as a delimiter that separates tokens. Non-negative group numbers (>= 0) indicate that
character sequences matching that regex group should be converted to tokens. Group zero refers to the entire
regex, groups greater than zero refer to parenthesized sub-expressions of the regex, counted from left to right.

Example:
A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma, and zero or
more spaces.

<anal yzer >
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="\s* \s*"/>
</ anal yzer >

In: "fee,fie, foe , fum, foo"

Out: "fee", "fie", "foe", "fum", "foo"

Example:

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more letters of
either case is extracted as a token.

<anal yzer>
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="[A-Z][A-Za-z]*"
group="0"/>
</ anal yzer >
In: "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."
Out: "Hello", "My", "Inigo", "Montoya", "You", "Prepare"

Example:

Apache Solr Reference Guide 5.5 112

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with an optional
semi-colon separator. Part numbers must be all numeric digits, with an optional hyphen. Regex capture groups
are numbered by counting left parenthesis from left to right. Group 3 is the subexpression "[0-9-]+", which
matches one or more digits or hyphens.

<anal yzer>

<t okeni zer cl ass="solr. PatternTokeni zer Fact ory"
pattern="(SKUl Part (\sNunber)?): ?2\s(\[0-9-\]+)" group="3"/>
</ anal yzer >

In: "SKU: 1234, Part Number 5678, Part: 126-987"
Out: "1234", "5678", "126-987"

UAX29 URL Email Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and
the numbers and hyphen(s) are preserved.

® Recognizes and preserves as single tokens the following:
® Internet domain names containing top-level domains validated against the white list in the IANA
Root Zone Database when the tokenizer was generated
® email addresses
® file://,http(s)://,andftp:// URLs
® |Pv4 and IPv6 addresses

The UAX29 URL Email Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following
token types: <ALPHANUM>, <NUM>, <URL>, <EMAI L>, <SOUTHEAST_ASI AN>, <| DEOGRAPHI C>, and <HI RAGAN
A>.

Factory class: sol r. UAX29URLEnmi | Tokeni zer Fact ory
Arguments:

maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
maxTokenLengt h.

Example:

<anal yzer >
<t okeni zer cl ass="sol r. UAX29URLEnai | Tokeni zer Fact ory"/ >
</ anal yzer >

In: "Visit http://accarol.com/contact.htm?from=external&a=10 or e-mail bob.cratchet@accarol.com”

Out: "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "e",

mail”, "bob.cratchet@accarol.com"

White Space Tokenizer

Simple tokenizer that splits the text stream on whitespace and returns sequences of non-whitespace characters
as tokens. Note that any punctuation will be included in the tokens.

Factory class: sol r. Wi t espaceTokeni zer Fact ory

Apache Solr Reference Guide 5.5 113

http://www.internic.net/zones/root.zone
http://www.internic.net/zones/root.zone
http://unicode.org/reports/tr29/#Word_Boundaries

Arguments: r ul e : Specifies how to define whitespace for the purpose of tokenization. Valid values:

® java: (Default) Uses Character.isWhitespace(int)
® uni code: Uses Unicode's WHITESPACE property

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory" rule="java" />
</ anal yzer >

In: "To be, or what?"

Out: "To", "be,", "or", "what?"

Related Topics

® TokenizerFactories

Filter Descriptions

You configure each filter with a <f i | t er > element in schema. xm as a child of <anal yzer >, following the <t
okeni zer > element. Filter definitions should follow a tokenizer or another filter definition because they take a T
okenSt r eamas input. For example.

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>..
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory classes must
implement the or g. apache. sol r. anal ysi s. TokenFi | t er Fact ory interface. Like tokenizers, filters are
also instances of TokenStream and thus are producers of tokens. Unlike tokenizers, filters also consume tokens
from a TokenStream. This allows you to mix and match filters, in any order you prefer, downstream of a
tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on the <filter>e
lement. For example:

<fiel dType nane="semnicol onDel i m ted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; " />
<filter class="solr.LengthFilterFactory" mn="2" nmax="7"/>
</ anal yzer >
</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Apache Solr Reference Guide 5.5 114

https://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#isWhitespace%28int%29
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Filters discussed in this section:

ASCII Folding Filter
Beider-Morse Filter

Classic Filter

Common Grams Filter
Collation Key Filter
Daitch-Mokotoff Soundex Filter
Double Metaphone Filter
Edge N-Gram Filter

English Minimal Stem Filter
Hunspell Stem Filter
Hyphenated Words Filter

ICU Folding Filter

ICU Normalizer 2 Filter

ICU Transform Filter

Keep Word Filter

KStem Filter

Length Filter

Lower Case Filter

Managed Stop Filter
Managed Synonym Filter
N-Gram Filter

Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter

Porter Stem Filter

Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter

Snowball Porter Stemmer Filter
Standard Filter

Stop Filter

Suggest Stop Filter

Synonym Filter

Token Offset Payload Filter
Trim Filter

Type As Payload Filter

Type Token Filter

Word Delimiter Filter

Related Topics

ASCII Folding Filter

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic Latin
Unicode block (the first 127 ASCII characters) to their ASCII equivalents, if one exists. This filter converts
characters from the following Unicode blocks:

C1 Controls and Latin-1 Supplement (PDF)
Latin Extended-A (PDF)

Latin Extended-B (PDF)

Latin Extended Additional (PDF)
Latin Extended-C (PDF)

Latin Extended-D (PDF)

IPA Extensions (PDF)

Phonetic Extensions (PDF)
Phonetic Extensions Supplement (PDF)

Apache Solr Reference Guide 5.5

115

http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf

General Punctuation (PDF)
Superscripts and Subscripts (PDF)
Enclosed Alphanumerics (PDF)
Dingbats (PDF)

Supplemental Punctuation (PDF)
Alphabetic Presentation Forms (PDF)
Halfwidth and Fullwidth Forms (PDF)

Factory class: sol r. ASCI | Fol di ngFi | t er Factory
Arguments: None
Example:

<anal yzer >

<filter class="solr.ASCl | Fol di ngFi | terFactory"/>
</ anal yzer >

In: "&" (Unicode character 00E1)

Out: "a" (ASCII character 97)

Beider-Morse Filter

Implements the Beider-Morse Phonetic Matching (BMPM) algorithm, which allows identification of similar names,
even if they are spelled differently or in different languages. More information about how this works is available in
the section on Phonetic Matching.

1. BeiderMorseFilter changed its behavior in Solr 5.0 (version 3.04 of the BMPM algorithm is implemented,
while previous Solr versions implemented BMPM version 3.00 - see http://stevemorse.org/phoneticinfo.h
tm), so any index built using this filter with earlier versions of Solr will need to be rebuilt.

Factory class: sol r. Bei der MorseFi | t er Factory
Arguments:

naneType: Types of names. Valid values are GENERIC, ASHKENAZI, or SEPHARDIC. If not processing
Ashkenazi or Sephardic names, use GENERIC.

rul eType: Types of rules to apply. Valid values are APPROX or EXACT.
concat : Defines if multiple possible matches should be combined with a pipe ("|").

| anguageSet : The language set to use. The value "auto” will allow the Filter to identify the language, or a
comma-separated list can be supplied.

Example:
<anal yzer>

<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
<filter class="solr.BeiderMrseFilterFactory" nameType="GENERI C' rul eType="APPROX"

concat ="true" |anguageSet ="auto">

</filter>
</ anal yzer >

Apache Solr Reference Guide 5.5 116

http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf
http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf
http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phoneticinfo.htm

Classic Filter

This filter takes the output of the Classic Tokenizer and strips periods from acronyms and "'s" from possessives.
Factory class: sol r. Cl assi cFi |l ter Factory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="solr.d assi cTokeni zer Factory"/>

<filter class="solr.d assicFilterFactory"/>
</ anal yzer >

In: "[.B.M. cat's can't"

Tokenizer to Filter: "I.B.M", "cat's", "can't"

Out: "IBM", "cat", "can't"

Common Grams Filter

This filter creates word shingles by combining common tokens such as stop words with regular tokens. This is
useful for creating phrase queries containing common words, such as "the cat." Solr normally ignores stop words
in queried phrases, so searching for "the cat" would return all matches for the word "cat."

Factory class: sol r. ConmonG ansFi | t er Fact ory
Arguments:
wor ds: (a common word file in .txt format) Provide the name of a common word file, such as st opwor ds. t xt .

f or mat : (optional) If the stopwords list has been formatted for Snowball, you can specify f or mat =" snowbal | "
so Solr can read the stopwords file.

i gnor eCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word
file. The default is false.

Example:
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.CommonG ansFilterFactory" words="stopwords.txt"
i gnor eCase="true"/>
</ anal yzer >
In: "the Cat"

Tokenizer to Filter: "the", "Cat"

Out: "the_cat"

Collation Key Filter

Collation allows sorting of text in a language-sensitive way. It is usually used for sorting, but can also be used
with advanced searches. We've covered this in much more detail in the section on Unicode Collation.

Apache Solr Reference Guide 5.5 117

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-ClassicTokenizer
https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation

Daitch-Mokotoff Soundex Filter

Implements the Daitch-Mokotoff Soundex algorithm, which allows identification of similar names, even if they are
spelled differently. More information about how this works is available in the section on Phonetic Matching.

Factory class: sol r. Dai t chMbkot of f SoundexFi | t er Fact ory
Arguments:

i nj ect : (trueffalse) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens

are replaced with the phonetic equivalent. Setting this to false will enable phonetic matching, but the exact
spelling of the target word may not match.

Example:
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.DaitchMbkot of f SoundexFilterFactory" inject="true"/>
</ anal yzer >

Double Metaphone Filter

This filter creates tokens using the Doubl eMet aphone encoding algorithm from commons-codec. For more
information, see the Phonetic Matching section.

Factory class: sol r. Doubl eMet aphoneFi | t er Fact ory

Arguments:

i nj ect: (trueffalse) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens
are replaced with the phonetic equivalent. Setting this to false will enable phonetic matching, but the exact
spelling of the target word may not match.

maxCodeLengt h: (integer) The maximum length of the code to be generated.
Example:
Default behavior for inject (true): keep the original token and add phonetic token(s) at the same position.
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="sol r.Doubl eMet aphoneFi|terFactory"/>
</ anal yzer>

In: "four score and Kuczewski"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "Kuczewski"(4)

out: "four"(1), "FR"(L), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "Kuczewski"(4), "KSSK"(4), "KXFS"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the
token they were derived from (immediately preceding). Note that "Kuczewski" has two encodings, which are
added at the same position.

Example:

Discard original token (i nj ect =" f al se").

Apache Solr Reference Guide 5.5 118

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.Doubl eMet aphoneFilterFactory" inject="fal se"/>

</ anal yzer>
In: "four score and Kuczewski"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "Kuczewski"(4)
Out: "FR"(1), "SKR"(2), "ANT"(3), "KSSK"(4), "KXFS"(4)

Note that "Kuczewski" has two encodings, which are added at the same position.

Edge N-Gram Filter

This filter generates edge n-gram tokens of sizes within the given range.
Factory class: sol r. EdgeNGr anFi | t er Fact ory

Arguments:

m nGr ansi ze: (integer, default 1) The minimum gram size.

max @& anti ze: (integer, default 1) The maximum gram size.

Example:

Default behavior.

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.EdgeNG antilterFactory"/>
</ anal yzer>
In: "four score and twenty"
Tokenizer to Filter: "four", "score", "and", "twenty"
Out: "f", "s", "a", "t"
Example:

A range of 1 to 4.

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.EdgeNG anFilterFactory" m nG anfSi ze="1" nmaxG antSi ze="4"/>

</ anal yzer >
In: “four score"
Tokenizer to Filter: "four”, "score"
Out: "f"' llfoll, llfoull, Ilfourll' "S", IISCII' "SCO", "SCOr"
Example:

A range of 4 to 6.

Apache Solr Reference Guide 5.5 119

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.EdgeNG anFilterFactory" m nG antSi ze="4" nmaxG anfti ze="6"/>
</ anal yzer>

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "four", "scor", "score", "twen", "twent", "twenty"

English Minimal Stem Filter

This filter stems plural English words to their singular form.
Factory class: sol r. Engl i shM ni nal St enfi | t er Fact ory
Arguments: None
Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >

<filter class="solr.EnglishMninmal StenFilterFactory"/>
</ anal yzer >

In: "dogs cats"

Tokenizer to Filter: "dogs", "cats"

Out: "dog", "cat"

Hunspell Stem Filter

The Hunspell Stem Filter provides support for several languages. You must provide the dictionary (. di ¢) and
rules (. af f) files for each language you wish to use with the Hunspell Stem Filter. You can download those
language files here. Be aware that your results will vary widely based on the quality of the provided dictionary
and rules files. For example, some languages have only a minimal word list with no morphological information.
On the other hand, for languages that have no stemmer but do have an extensive dictionary file, the Hunspell
stemmer may be a good choice.

Factory class: sol r. Hunspel | Stenti | t er Fact ory

Arguments:

di cti onary: (required) The path of a dictionary file.

af fi x: (required) The path of a rules file.

i gnor eCase: (boolean) controls whether matching is case sensitive or not. The default is false.

strict Af fi xPar si ng: (boolean) controls whether the affix parsing is strict or not. If true, an error while
reading an affix rule causes a ParseException, otherwise is ignored. The default is true.

Example:

Apache Solr Reference Guide 5.5 120

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.Hunspell StentilterFactory"
di ctionary="en_GB. di c"
affix="en_GCB. af f"
i gnor eCase="true"
strictAffixParsing="true" />
</ anal yzer>

In: "jump jumping jumped"”

Tokenizer to Filter: "jump"”, "jumping"”, "jumped"

Out: "jump”, "jump”, "jump"

Hyphenated Words Filter

This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line break or
other intervening whitespace in the field test. If a token ends with a hyphen, it is joined with the following token
and the hyphen is discarded. Note that for this filter to work properly, the upstream tokenizer must not remove
trailing hyphen characters. This filter is generally only useful at index time.

Factory class: sol r. Hyphenat edWor dsFi | t er Fact ory
Arguments: None
Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.Hyphenat edWrdsFilterFactory"/>
</ anal yzer >
In: "A hyphen- ated word"
Tokenizer to Filter: "A", "hyphen-", "ated", "word"

Out: "A", "hyphenated", "word"

ICU Folding Filter

This filter is a custom Unicode normalization form that applies the foldings specified in Unicode Technical Report
30 in addition to the NFKC_Casef ol d normalization form as described in ICU Normalizer 2 Filter. This filter is a
better substitute for the combined behavior of the ASCII Folding Filter, Lower Case Filter, and ICU Normalizer 2
Filter.

To use this filter, see sol r/ contri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you
need to add to your sol r _hon®e/ | i b.

Factory class: sol r. | CUFol di ngFi | t er Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 5.5 121

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.|CUFol dingFilterFactory"/>

</ anal yzer>

For detailed information on this normalization form, see http://www.unicode.org/reports/tr30/tr30-4.html.

ICU Normalizer 2 Filter
This filter factory normalizes text according to one of five Unicode Normalization Forms as described in Unicode
Standard Annex #15:

® NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition

® NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition, followed by
canonical composition

® NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition

®* NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility decomposition, followed
by canonical composition

® NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional Unicode
case folding. Using the ICU Normalizer 2 Filter is a better-performing substitution for the Lower Case Filter
and NFKC normalization.

Factory class: sol r. | CUNormal i zer 2Fi | t er Fact ory
Arguments:
nane: (string) The name of the normalization form; nf ¢, nf d, nf kc, nf kd, nf kc_cf
node: (string) The mode of Unicode character composition and decomposition; conpose or deconpose
Example:
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.|CUNornmalizer2FilterFactory" name="nfkc_cf" node="conpose"/>
</ anal yzer >

For detailed information about these Unicode Normalization Forms, see http://unicode.org/reports/tr15/.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you
need to add to your sol r _hon®e/ | i b.

ICU Transform Filter

This filter applies ICU Tranforms to text. This filter supports only ICU System Transforms. Custom rule sets are
not supported.
Factory class: sol r. | CUTransfornfi | t er Factory

Arguments:

i d: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full list of ICU
System Transforms, see http://demo.icu-project.org/icu-bin/translit? TEMPLATE_FILE=data/translit_rule_main.ht
ml.

Example:

Apache Solr Reference Guide 5.5 122

http://www.unicode.org/reports/tr30/tr30-4.html
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.|CUTransfornFilterFactory" id="Traditional-Sinplified"'/>
</ anal yzer>

For detailed information about ICU Transforms, see http://userguide.icu-project.org/transforms/general.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you
need to add to your sol r _hon®e/ | i b.

Keep Word Filter

This filter discards all tokens except those that are listed in the given word list. This is the inverse of the Stop
Words Filter. This filter can be useful for building specialized indices for a constrained set of terms.

Factory class: sol r. KeepWor dFi | t er Fact ory
Arguments:

wor ds: (required) Path of a text file containing the list of keep words, one per line. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or a simple filename in the Solr config directory.

i gnor eCase: (true/false) If true then comparisons are done case-insensitively. If this argument is true, then the
words file is assumed to contain only lowercase words. The default is false.

enabl ePosi ti onl ncrenent s: if| uceneMat chVer si on is 4. 3 or earlier and enabl ePosi ti onl ncr ement
s="fal se", no position holes will be left by this filter when it removes tokens. This argument is invalid if | uc
eneMat chVer si on is 5. 0 or later.

Example:

Where keepwor ds. t xt contains:

happy
funny

silly

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="sol r.KeepWrdFilterFactory" words="keepwords.txt"/>
</ anal yzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"
Out: "funny"

Example:

Same keepwor ds. t xt , case insensitive:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"
i gnor eCase="true"/>
</ anal yzer>

Apache Solr Reference Guide 5.5 123

http://userguide.icu-project.org/transforms/general

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Out: "Happy", "funny”
Example:

Using LowerCaseFilterFactory before filtering for keep words, no i gnor eCase flag.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="sol r.KeepWrdFilterFactory" words="keepwords.txt"/>
</ anal yzer >

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny”

Filter to Filter: "happy", "sad", "or", "funny"

Out: "happy", "funny"

KStem Filter

KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive stemmer. KStem
was written by Bob Krovetz, ported to Lucene by Sergio Guzman-Lara (UMASS Amherst). This stemmer is only
appropriate for English language text.

Factory class: sol r. KSt enFi | t er Factory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.KStentFilterFactory"/>

</ anal yzer>

In: "jump jumping jumped"”

Tokenizer to Filter: "jump", "jumping"”, "jumped"

Out: "jump”, "jump”, "jump"

Length Filter

This filter passes tokens whose length falls within the min/max limit specified. All other tokens are discarded.
Factory class: sol r. Lengt hFi | t er Fact ory

Arguments:

ni n: (integer, required) Minimum token length. Tokens shorter than this are discarded.

max: (integer, required, must be >= min) Maximum token length. Tokens longer than this are discarded.

enabl ePosi ti onl ncrenent s: if | uceneMat chVer si on is 4. 3 or earlier and enabl ePosi ti onl ncr ement

Apache Solr Reference Guide 5.5 124

s="fal se", no position holes will be left by this filter when it removes tokens. This argument is invalid if | uc
enelMat chVer si onis 5. 0 or later.

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

</ anal yzer >

In: "turn right at Albuquerque”

Tokenizer to Filter: "turn”,

right", "at", "Albuquerque"

Out: "turn", "right"

Lower Case Filter

Converts any uppercase letters in a token to the equivalent lowercase token. All other characters are left
unchanged.

Factory class: sol r. Lower CaseFi | t er Fact ory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >

In: "Down With CamelCase"

Tokenizer to Filter: "Down", "With", "CamelCase"

Out: "down", "with", "camelcase"

Managed Stop Filter

This is specialized version of the Stop Words Filter Factory that uses a set of stop words that are managed from
a REST API.

Arguments:

managed: The name that should be used for this set of stop words in the managed REST API.

Example:

With this configuration the set of words is named "english" and can be managed via/ sol r/ col | ecti on_nane
/ schema/ anal ysi s/ st opwor ds/ engl i sh

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="sol r.ManagedSt opFilterFactory" nmanaged="english"/>
</ anal yzer>

Apache Solr Reference Guide 5.5 125

See Stop Filter for example input/output.

Managed Synonym Filter

This is specialized version of the Synonym Filter Factory that uses a mapping on synonyms that is managed
from a REST API.

Arguments:

managed: The name that should be used for this mapping on synonyms in the managed REST API.

Example:

With this configuration the set of mappings is hamed "english” and can be managed via / sol r/ col | ecti on_n

ane/ schema/ anal ysi s/ synonyns/ engl i sh

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="sol r. ManagedSynonyn¥ilterFactory" nanaged="english"/>
</ anal yzer >

See Synonym Filter for example input/output.

N-Gram Filter

Generates n-gram tokens of sizes in the given range. Note that tokens are ordered by position and then by gram
size.

Factory class: sol r. NG anFi | t er Factory
Arguments:
m nGr ansi ze: (integer, default 1) The minimum gram size.
maxG anfi ze: (integer, default 2) The maximum gram size.
Example:
Default behavior.
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.NG antilterFactory"/>
</ anal yzer>
In: “four score”
Tokenizer to Filter: "four", "score"
Out: "f*, "o", "u", "r", "fo", "ou", "ur", "s", "c", "o", "r", "e", "sc", "co", "or", "re"
Example:

A range of 1 to 4.

Apache Solr Reference Guide 5.5 126

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.NG anFilterFactory" m nG anti ze="1" nmaxG anfti ze="4"/>
</ anal yzer >

In: "four score"
Tokenizer to Filter: "four", "score"
Out: "f*, "fo", "fou", "four", "s", "sc", "sco", "scor"
Example:
A range of 3to 5.
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.NG anFilterFactory" m nG antSi ze="3" nmaxG anfti ze="5"/>
</ anal yzer >

In: “four score"
Tokenizer to Filter: "four”, "score"

Out: "fou", "four", "our", "sco", "scor", "score", "cor", "core", "ore

Numeric Payload Token Filter

This filter adds a numeric floating point payload value to tokens that match a given type. Refer to the Javadoc for
the or g. apache. | ucene. anal ysi s. Token class for more information about token types and payloads.

Factory class: sol r. Nuner i cPayl oadTokenFi | t er Fact ory
Arguments:
payl oad: (required) A floating point value that will be added to all matching tokens.

t ypeMat ch: (required) A token type name string. Tokens with a matching type name will have their payload set
to the above floating point value.

Example:
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.NunericPayl oadTokenFi |l terFactory" payl oad="0. 75"
t ypeMat ch="wor d"/ >
</ anal yzer >
In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0.75], "bang"[0.75], "boom"[0.75]

Pattern Replace Filter

This filter applies a regular expression to each token and, for those that match, substitutes the given replacement

Apache Solr Reference Guide 5.5 127

string in place of the matched pattern. Tokens which do not match are passed though unchanged.

Factory class: sol r. Patt er nRepl aceFi | t er Factory

Arguments:

pat t er n: (required) The regular expression to test against each token, as per j ava. util . regex. Pattern.

r epl acenent : (required) A string to substitute in place of the matched pattern. This string may contain
references to capture groups in the regex pattern. See the Javadoc for j ava. uti | . regex. Mat cher.

r epl ace: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the token should be
replaced, or only the first.

Example:

Simple string replace:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternRepl aceFilterFactory" pattern="cat" repl acenent="dog"/>
</ anal yzer >

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"

Out: "dog", "condogenate”, "dogydog"
Example:

String replacement, first occurrence only:

<anal yzer>

<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >

<filter class="solr.PatternRepl aceFilterFactory" pattern="cat" replacenent="dog"
replace="first"/>
</ anal yzer >

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat”
Out: "dog", "condogenate”, "dogycat"

Example:

More complex pattern with capture group reference in the replacement. Tokens that start with non-numeric
characters and end with digits will have an underscore inserted before the numbers. Otherwise the token is
passed through.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternRepl aceFilterFactory" pattern="(\D+)(\d+)$"
repl acenent ="$1_$2"/>
</ anal yzer>

In: "cat foo1234 9987 blah1234foo"
Tokenizer to Filter: "cat", "fo01234", "9987", "blah1234foo0"
Out: "cat", "foo_1234", "9987", "blah1234foo"

Apache Solr Reference Guide 5.5 128

Phonetic Filter

This filter creates tokens using one of the phonetic encoding algorithms in the or g. apache. commons. codec.
| anguage package. For more information, see the section on Phonetic Matching.

Factory class: sol r. Phoneti cFi |l ter Factory

Arguments:

encoder : (required) The name of the encoder to use. The encoder name must be one of the following (case

insensitive): "DoubleMetaphone”, "Metaphone”, "Soundex”, "RefinedSoundex”, "Caverphone" (v2.0), "CologneP
honetic", or "Nysiis".

i nj ect : (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens
are replaced with the phonetic equivalent. Setting this to false will enable phonetic matching, but the exact
spelling of the target word may not match.

maxCodelLengt h: (integer) The maximum length of the code to be generated by the Metaphone or Double
Metaphone encoders.

Example:
Default behavior for DoubleMetaphone encoding.
<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"/>

</ anal yzer >
In: "four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "twenty"(4), "TNT"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the
token they were derived from (immediately preceding).

Example:
Discard original token.
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"
inject="fal se"/>
</ anal yzer >
In: "four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)
Example:

Default Soundex encoder.

Apache Solr Reference Guide 5.5 129

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html
http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/Nysiis.html

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Soundex"/>
</ anal yzer>

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "four"(1), "F600"(1), "score"(2), "S600"(2), "and"(3), "A530"(3), "twenty"(4), "T530"(4)

Porter Stem Filter

This filter applies the Porter Stemming Algorithm for English. The results are similar to using the Snowball Porter
Stemmer with the | anguage="Engl i sh" argument. But this stemmer is coded directly in Java and is not based
on Snowball. It does not accept a list of protected words and is only appropriate for English language text.
However, it has been benchmarked as four times faster than the English Snowball stemmer, so can provide a
performance enhancement.

Factory class: sol r. Porter StenFi |l ter Factory
Arguments: None
Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >

<filter class="solr.PorterStentilterFactory"/>
</ anal yzer >

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping"”, "jumped"

Out: "jump”, "jump", "jump"

Remove Duplicates Token Filter

The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they have the same
text and position values.

Factory class: sol r. RenoveDupl i cat esTokenFi | t er Fact ory
Arguments: None
Example:

One example of where RenoveDupl i cat esTokenFi | t er Fact ory is in situations where a synonym file is

being used in conjuntion with a stemmer causes some synonyms to be reduced to the same stem. Consider the
following entry from a synonynmns. t xt file:

Tel evi sion, Televisions, TV, TVs

When used in the following configuration:

Apache Solr Reference Guide 5.5 130

http://markmail.org/thread/d2c443z63z37rwf6

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.SynonynFilterFactory" synonyms="synonyns.txt"/>
<filter class="solr.EnglishMninml StenFilterFactory"/>
<filter class="sol r. RenoveDuplicatesTokenFilterFactory"/>
</ anal yzer >

In: "Watch TV"

Tokenizer to Synonym Filter: "Watch"(1) "TV"(2)

Synonym Filter to Stem Filter: "Watch"(1) "Television"(2) "Televisions"(2) "TV"(2) "TVs"(2)
Stem Filter to Remove Dups Filter: "Watch"(1) "Television"(2) "Television"(2) "TV"(2) "TV"(2)
Out: "Watch"(1) "Television"(2) "TV"(2)

Reversed Wildcard Filter

This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without wildcards are not
reversed.

Factory class: sol r. Rever sedW | dcar dFi | t er Fact ory
Arguments:

wi t hOri gi nal (boolean) If true, the filter produces both original and reversed tokens at the same positions. If
false, produces only reversed tokens.

maxPosAst eri sk (integer, default = 2) The maximum position of the asterisk wildcard (*') that triggers the
reversal of the query term. Terms with asterisks at positions above this value are not reversed.

maxPosQuest i on (integer, default = 1) The maximum position of the question mark wildcard (?") that triggers
the reversal of query term. To reverse only pure suffix queries (queries with a single leading asterisk), set this to
0 and maxPosAst eri sk to 1.

maxFr acti onAst eri sk (float, default = 0.0) An additional parameter that triggers the reversal if asterisk (‘*")
position is less than this fraction of the query token length.

m nTrail i ng (integer, default = 2) The minimum number of trailing characters in a query token after the last
wildcard character. For good performance this should be set to a value larger than 1.

Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.ReversedW | dcardFilterFactory" wthOiginal ="true"

maxPosAst eri sk="2" maxPosQuestion="1" mnTrailing="2" nmaxFractionAsterisk="0"/>
</ anal yzer>

In: "*foo *bar"
Tokenizer to Filter: "*foo", "*bar"

Out: "oof*", "rab*"

Shingle Filter

Apache Solr Reference Guide 5.5 131

This filter constructs shingles, which are token n-grams, from the token stream. It combines runs of tokens into a
single token.

Factory class: sol r. Shi ngl eFi | t er Factory

Arguments:

nm nShi ngl eSi ze: (integer, default 2) The minimum number of tokens per shingle.

max Shi ngl eSi ze: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.

out put Uni gr ans: (true/false) If true (the default), then each individual token is also included at its original
position.

out put Uni gr ansl f NoShi ngl es: (trueffalse) If false (the default), then individual tokens will be output if no
shingles are possible.

t okenSepar at or : (string, default is " ") The default string to use when joining adjacent tokens to form a shingle.
Example:
Default behavior.
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.ShingleFilterFactory"/>
</ anal yzer >

In: "To be, or what?"
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)
Out: "To"(2), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)
Example:
A shingle size of four, do not include original token.
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ShingleFilterFactory" naxShingl eSi ze="4"

out put Uni grans="f al se"/ >
</ anal yzer>

In: "To be, or not to be."
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)

Out: "To be"(1), "To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "or not"(3), "or not
to"(3), "or not to be"(3), "not to"(4), "not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter

This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a software
package that generates pattern-based word stemmers. This type of stemmer is not as accurate as a table-based
stemmer, but is faster and less complex. Table-driven stemmers are labor intensive to create and maintain and
so are typically commercial products.

Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch, English, Finnish, French,
German, Hungarian, Italian, Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish and Turkish. For
more information on Snowball, visit http://snowball.tartarus.org/.

Apache Solr Reference Guide 5.5 132

http://snowball.tartarus.org/

St opFi | t er Fact ory, ConmonG ansFi | t er Fact ory, and ConmonGr ansQuer yFi | t er Fact ory can
optionally read stopwords in Snowball format (specify f or mat =" snowbal | " in the configuration of those
FilterFactories).

Factory class: sol r. Snowbal | PorterFilterFactory
Arguments:

| anguage: (default "English") The name of a language, used to select the appropriate Porter stemmer to use.
Case is significant. This string is used to select a package name in the "org.tartarus.snowball.ext" class
hierarchy.

pr ot ect ed: Path of a text file containing a list of protected words, one per line. Protected words will not be
stemmed. Blank lines and lines that begin with "#" are ignored. This may be an absolute path, or a simple file
name in the Solr config directory.

Example:
Default behavior:
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory"/>
</ anal yzer >

In: "flip flipped flipping"
Tokenizer to Filter: "flip", "flipped”, "flipping"
Out: "flip", "flip", "flip"
Example:
French stemmer, English words:
<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="French"/>
</ anal yzer >

In: "flip flipped flipping"
Tokenizer to Filter: "flip", "flipped”, "flipping"
Out: "flip", "flipped", "flipping"
Example:
Spanish stemmer, Spanish words:
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Spanish"/>
</ anal yzer >
In: "cante canta"
Tokenizer to Filter: "cante", "canta"

Out: "cant", "cant"

Apache Solr Reference Guide 5.5 133

Standard Filter

This filter removes dots from acronyms and the substring "'s" from the end of tokens. This filter depends on the
tokens being tagged with the appropriate term-type to recognize acronyms and words with apostrophes.

Factory class: sol r. St andar dFi | t er Fact ory
Arguments: None

1. This filter is no longer operational in Solr when the | uceneMat chVer si on (in sol rconfi g. xnl) is
higher than "3.1".

Stop Filter

This filter discards, or stops analysis of, tokens that are on the given stop words list. A standard stop words list is
included in the Solr config directory, named st opwor ds. t xt , which is appropriate for typical English language
text.

Factory class: sol r. St opFi | t er Factory
Arguments:

wor ds: (optional) The path to a file that contains a list of stop words, one per line. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or path relative to the Solr config directory.

f or mat : (optional) If the stopwords list has been formatted for Snowball, you can specify f or mat =" snowbal | "
so Solr can read the stopwords file.

i gnor eCase: (true/false, default false) Ignore case when testing for stop words. If true, the stop list should
contain lowercase words.

enabl ePosi ti onl ncrenent s: if| uceneMat chVer si on is 4. 4 or earlier and enabl ePosi ti onl ncr ement
s="fal se", no position holes will be left by this filter when it removes tokens. This argument is invalid if | uc
eneMat chVer si on is 5. 0 or later.

Example:
Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.
<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >

<filter class="solr.StopFilterFactory" words="stopwords.txt"/>
</ anal yzer >

In: "To be or what?"
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)
Out: "To"(1), "what"(4)
Example:
<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>
</ anal yzer >

Apache Solr Reference Guide 5.5 134

In: "To be or what?"
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)
Out: "what"(4)

Suggest Stop Filter

Like Stop Filter, this filter discards, or stops analysis of, tokens that are on the given stop words list. Suggest
Stop Filter differs from Stop Filter in that it will not remove the last token unless it is followed by a token
separator. For example, a query "f i nd t he" would preserve the 't he' since it was not followed by a space,
punctuation etc., and mark it as a KEYWORD so that following filters will not change or remove it. By contrast, a
query like "fi nd t he popsi cl e" would remove "t he" as a stopword, since it's followed by a space. When
using one of the analyzing suggesters, you would normally use the ordinary St opFi | t er Fact ory in your index
analyzer and then SuggestStopFilter in your query analyzer.

Factory class: sol r. Suggest St opFi | t er Fact ory
Arguments:

wor ds: (optional; default: St opAnal yzer #ENGLI SH_STOP_WORDS SET) The name of a stopwords file to
parse.

f or mat : (optional; default: wor dset) Defines how the words file will be parsed. If wor ds is not specified, then f
or mat must not be specified. The valid values for the format option are:

®* wor dset : This is the default format, which supports one word per line (including any intra-word
whitespace) and allows whole line comments begining with the "#" character. Blank lines are ignored.

® snowbal | : This format allows for multiple words specified on each line, and trailing comments may be
specified using the vertical line (|). Blank lines are ignored.

i gnor eCase: (optional; default: f al se) If t r ue, matching is case-insensitive.

Example:

<anal yzer type="query">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Suggest StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt" format="wordset"/>
</ anal yzer >

In: "The The"

Tokenizer to Filter: "the"(1), "the"(2)
Out: "the"(2)

Synonym Filter

This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is found, then
the synonym is emitted in place of the token. The position value of the new tokens are set such they all occur at
the same position as the original token.

Factory class: sol r. Synonyn¥i | t er Fact ory

Arguments:

Apache Solr Reference Guide 5.5 135

http://lucene.apache.org/core/5_5_0/analyzers-common/org/apache/lucene/analysis/core/StopAnalyzer.html#ENGLISH_STOP_WORDS_SET

synonyns: (required) The path of a file that contains a list of synonyms, one per line. In the (default) sol r forma
t - see the f or mat argument below for alternatives - blank lines and lines that begin with "#" are ignored. This
may be an absolute path, or path relative to the Solr config directory. There are two ways to specify synonym
mappings:

® A comma-separated list of words. If the token matches any of the words, then all the words in the list are
substituted, which will include the original token.

® Two comma-separated lists of words with the symbol "=>" between them. If the token matches any word
on the left, then the list on the right is substituted. The original token will not be included unless it is also in
the list on the right.

i gnor eCase: (optional; default: f al se) If t r ue, synonyms will be matched case-insensitively.

expand: (optional; default: t rue) If t r ue, a synonym will be expanded to all equivalent synonyms. If f al se, all
equivalent synonyms will be reduced to the first in the list.

f or mat : (optional; default: sol r) Controls how the synonyms will be parsed. The short names sol r (for Sol r S
ynonynPar ser) and wor dnet (for Wor dnet SynonynPar ser) are supported, or you may alternatively supply
the name of your own SynonymVap. Bui | der subclass.

t okeni zer Fact or y: (optional; default: Whi t espaceTokeni zer Fact or y) The name of the tokenizer factory
to use when parsing the synonyms file. Arguments with the name prefix "t okeni zer Fact ory. " will be
supplied as init params to the specified tokenizer factory. Any arguments not consumed by the synonym filter
factory, including those without the "t okeni zer Fact ory. " prefix, will also be supplied as init params to the
tokenizer factory. If t okeni zer Fact ory is specified, then anal yzer may not be, and vice versa.

anal yzer : (optional; default: Whi t espaceTokeni zer Fact or y) The name of the analyzer class to use when
parsing the synonyms file. If anal yzer is specified, then t okeni zer Fact or y may not be, and vice versa.

For the following examples, assume a synonyms file named nysynonyns. t xt :

couch, sof a, di van

teh => the

huge, gi nor nous, hunungous => | ar ge

smal | => tiny,teeny, weeny
Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/ >

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh small couch”
Tokenizer to Filter: "teh"(1), "small"(2), "couch”(3)
Out: "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)
Example:
<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh ginormous, humungous sofa”

Apache Solr Reference Guide 5.5 136

http://lucene.apache.org/core/5_5_0/analyzers-common/org/apache/lucene/analysis/synonym/SolrSynonymParser.html
http://lucene.apache.org/core/5_5_0/analyzers-common/org/apache/lucene/analysis/synonym/SolrSynonymParser.html
http://lucene.apache.org/core/5_5_0/analyzers-common/org/apache/lucene/analysis/synonym/WordnetSynonymParser.html
http://lucene.apache.org/core/5_5_0/analyzers-common/org/apache/lucene/analysis/synonym/SynonymMap.Builder.html

Tokenizer to Filter: "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)

Out: "the"(1), "large"(2), "large"(3), "couch"(4), "sofa"(4), "divan"(4)

Token Offset Payload Filter

This filter adds the numeric character offsets of the token as a payload value for that token.
Factory class: sol r. TokenOf f set Payl oadTokenFi | t er Fact ory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.TokenO fset Payl oadTokenFi |t er Fact ory"/ >
</ anal yzer >

In: "bing bang boom"
Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0,4], "bang"[5,9], "boom"[10,14]

Trim Filter
This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at whitespace, so
this filter is most often used for special situations.

Factory class: sol r. TrinFi |l t er Fact ory

Arguments:

updat ek f set s: if | uceneMat chVer si on is 4. 3 or earlier and updat eOf f set s="t rue", trimmed tokens'
start and end offsets will be updated to those of the first and last characters (plus one) remaining in the token. T
his argument is invalid if | uceneMat chVer si on is 5. 0 or later.

Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not remove
whitespace.

<anal yzer >
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern=","/>
<filter class="solr.TrinFilterFactory"/>

</ anal yzer >

In: "one, two , three ,four "

Tokenizer to Filter: "one",

two ", " three ", "four "

Out: "one", "two", "three", "four"

Type As Payload Filter

This filter adds the token's type, as an encoded byte sequence, as its payload.

Apache Solr Reference Guide 5.5 137

Factory class: sol r. TypeAsPayl oadTokenFi | t er Fact ory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.TypeAsPayl oadTokenFilterFactory"/>
</ anal yzer >

In: "Pay Bob's .O.U."
Tokenizer to Filter: "Pay", "Bob's", ".O.U."
Out: "Pay"[<ALPHANUM>], "Bob's"[<APOSTROPHE>], "I.0.U."[RACRONYM>]

Type Token Filter

This filter blacklists or whitelists a specified list of token types, assuming the tokens have type metadata
associated with them. For example, the UAX29 URL Email Tokenizer emits "<URL>" and "<EMAIL>" typed
tokens, as well as other types. This filter would allow you to pull out only e-mail addresses from text as tokens, if
you wish.

Factory class: sol r. TypeTokenFi | t er Fact ory
Arguments:
t ypes: Defines the location of a file of types to filter.

useWi t el i st: If true, the file defined in t ypes should be used as include list. If false, or undefined, the file
defined in t ypes is used as a blacklist.

enabl ePosi ti onl ncrenent s: if | uceneMat chVer si on is 4. 3 or earlier and enabl ePosi ti onl ncr emrent
s="fal se", no position holes will be left by this filter when it removes tokens. This argument is invalid if | uc
eneMat chVer si onis 5. 0 or later.

Example:
<anal yzer >
<filter class="solr.TypeTokenFilterFactory" types="stoptypes.txt"

useWhitelist="true"/>
</ anal yzer>

Word Delimiter Filter

This filter splits tokens at word delimiters. The rules for determining delimiters are determined as follows:

® A change in case within a word: "CamelCase" -> "Camel", "Case". This can be disabled by setting spl i t
OnCaseChange="0".

® A transition from alpha to numeric characters or vice versa: "Gonzo5000" -> "Gonzo", "5000" "4500XL" ->
"4500", "XL". This can be disabled by setting spl i t OnNun®eri cs="0".

® Non-alphanumeric characters (discarded): "hot-spot" -> "hot", "spot"

® Atrailing "'s" is removed: "O'Reilly's" -> "O", "Reilly"

Apache Solr Reference Guide 5.5 138

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-UAX29URLEmailTokenizer

® Any leading or trailing delimiters are discarded: "--hot-spot--" -> "hot", "spot"
Factory class: sol r. WordDel i mi terFil ter Factory
Arguments:

gener at eWor dPar t s: (integer, default 1) If non-zero, splits words at delimiters. For example:"CamelCase",

"hot-spot" -> "Camel", "Case", "hot", "spot"

gener at eNunber Part s: (integer, default 1) If non-zero, splits numeric strings at delimiters:"1947-32" ->"1947",
II32II

spl i t OnCaseChange: (integer, default 1) If 0, words are not split on camel-case changes:"BugBlaster-XL" -> "B
ugBlaster", "XL". Example 1 below illustrates the default (non-zero) splitting behavior.

spl it OnNuneri cs: (integer, default 1) If 0, don't split words on transitions from alpha to numeric:"FemBot3000"
->"Fem", "Bot3000"

cat enat eWor ds: (integer, default 0) If non-zero, maximal runs of word parts will be joined: "hot-spot-sensor's" -
> "hotspotsensor"

cat enat eNunber s: (integer, default 0) If non-zero, maximal runs of number parts will be joined: 1947-32" -> "1
94732"

cat enat eAl | : (0/1, default 0) If non-zero, runs of word and number parts will be joined: "Zap-Master-9000" -> "
ZapMaster9000"

preserveQi gi nal : (integer, default 0) If non-zero, the original token is preserved: "Zap-Master-9000" -> "Zap
-Master-9000", "Zap", "Master", "9000"

pr ot ect ed: (optional) The pathname of a file that contains a list of protected words that should be passed
through without splitting.

st enmEngl i shPossessi ve: (integer, default 1) If 1, strips the possessive "s" from each subword.
Example:
Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory"/>
</ anal yzer >

In: "hot-spot RoboBlaster/9000 100XL"

Tokenizer to Filter: "hot-spot", "RoboBlaster/9000", "100XL"

Out: "hot", "spot", "Robo", "Blaster", "9000", "100", "XL"

Example:

Do not split on case changes, and do not generate number parts. Note that by not generating number parts,

tokens containing only numeric parts are ultimately discarded.

<anal yzer>

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" generateNunberParts="0"
spl it OnCaseChange="0"/>
</ anal yzer >

In: "hot-spot RoboBlaster/9000 100-42"

Apache Solr Reference Guide 5.5 139

Tokenizer to Filter: "hot-spot"”, "RoboBlaster/9000", "100-42"
Out: "hot", "spot", "RoboBlaster"”, "9000"
Example:
Concatenate word parts and number parts, but not word and number parts that occur in the same token.
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.WrdDelimterFilterFactory" catenateWrds="1"

cat enat eNunber s="1"/>
</ anal yzer>

In: "hot-spot 100+42 XL40"
Tokenizer to Filter: "hot-spot”(1), "100+42"(2), "XL40"(3)
Out: "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)
Example:
Concatenate all. Word and/or number parts are joined together.
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelinterFilterFactory" catenateAl|="1"/>
</ anal yzer>

In: "XL-4000/ES™"
Tokenizer to Filter: "XL-4000/ES"(1)
Out: "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)
Example:
Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" protected="protwords.txt"/>
</ anal yzer>

In: "FooBar AstroBlaster XL-5000 ==ES-34-"
Tokenizer to Filter: "FooBar", "AstroBlaster”, "XL-5000", "==ES-34-"
Out: "FooBar", "FooBar", "AstroBlaster", "XL-5000", "ES", "34"

Related Topics

® TokenFilterFactories

CharFilterFactories

Char Filter is a component that pre-processes input characters. Char Filters can be chained like Token Filters
and placed in front of a Tokenizer. Char Filters can add, change, or remove characters while preserving the
original character offsets to support features like highlighting.

Apache Solr Reference Guide 5.5 140

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories

Toplcs discussed in this section:
solr.MappingCharFilterFactory
solr.HTMLStripCharFilterFactory
solr.ICUNormalizer2CharFilterFactory
solr.PatternReplaceCharFilterFactory
Related Topics

solr.MappingCharFilterFactory

This filter creates or g. apache. | ucene. anal ysi s. Mappi ngChar Fi | t er, which can be used for changing
one string to another (for example, for normalizing é to e.).

This filter requires specifying a mappi ng argument, which is the path and name of a file containing the mappings
to perform.

Example:

<anal yzer >

<charFilter class="sol r.Mappi ngCharFilterFactory"
mappi ng="mappi ng- Fol dToASCI | . t xt"/ >

<t okeni zer ...>

[...]

</ anal yzer >

Mapping file syntax:

® Comment lines beginning with a hash mark (#), as well as blank lines, are ignored.
® Each non-comment, non-blank line consists of a mapping of the form: " source" => "target"
® Double-quoted source string, optional whitespace, an arrow (=>), optional whitespace,
double-quoted target string.
® Trailing comments on mapping lines are not allowed.
® The source string must contain at least one character, but the target string may be empty.
® The following character escape sequences are recognized within source and target strings:

Escape Resulting character (ECMA-48 alia Unicode Example mapping line
sequence S) character
\\ \ U+005C AR
\" " U+0022 "\"and\"" => "'and""
\b backspace (BS) U+0008 "\b" =" "
\t tab (HT) U+0009 \tro=>
\n newline (LF) U+000A "\'n" => "<pbr>"
\ f form feed (FF) U+000C "\f" => "\n"
\r carriage return (CR) U+000D "\r" =

"/carriage-return/"

\ UXXXX Unicode char referenced by the 4 hex U+XXXX "\UFEFF" => ""

digits

® A backslash followed by any other character is interpreted as if the character were present without

Apache Solr Reference Guide 5.5 141

http://www.ecma-international.org/publications/standards/Ecma-048.htm

the backslash.

solr.HTMLStripCharFilterFactory

This filter creates or g. apache. sol r. anal ysi s. HTM.St ri pChar Fi | t er . This Char Filter strips HTML from
the input stream and passes the result to another Char Filter or a Tokenizer.

This filter:

Removes HTML/XML tags while preserving other content.

Removes attributes within tags and supports optional attribute quoting.

Removes XML processing instructions, such as: <?foo bar?>

Removes XML comments.

Removes XML elements starting with <!>.

Removes contents of <script> and <style> elements.

Handles XML comments inside these elements (normal comment processing will not always work).
Replaces numeric character entities references like A or &#x 7f ; with the corresponding character.
The terminating ;' is optional if the entity reference at the end of the input; otherwise the terminating ;' is
mandatory, to avoid false matches on something like "Alpha&Omega Corp".

Replaces all named character entity references with the corresponding character.

 is replaced with a space instead of the 0xa0 character.

Newlines are substituted for block-level elements.

<CDATA> sections are recognized.

Inline tags, such as , <i >, or will be removed.

Uppercase character entities like quot , gt , I t and anp are recognized and handled as lowercase.

(-}) The input need not be an HTML document. The filter removes only constructs that look like HTML. If the
input doesn't include anything that looks like HTML, the filter won't remove any input.

The table below presents examples of HTML stripping.

Input Output
ny l i nk</ a> my link

hel | o<! - - conment - - > hello
hel | o<script><!-- f('<!--internal--></script>"); --></script> hello
if a<b then print a; if a<b then print a;
hell o <td hei ght=22 nowap align="left"> hello
a<b A Al pha&Onega a<b A Alpha&Omega

solr.lCUNormalizer2CharFilterFactory

This filter performs pre-tokenization Unicode normalization using ICU4J.
Arguments:
nane: A Unicode Normalization Form, one of nf ¢, nf kc, nf kc_cf . Default is nf kc_cf .

node: Either conpose or deconpose. Default is conmpose. Use deconpose with name="nf c" or name="nf kc
" to get NFD or NFKD, respectively.

Apache Solr Reference Guide 5.5 142

http://site.icu-project.org
http://unicode.org/reports/tr15/

filter: A UnicodeSet pattern. Codepoints outside the set are always left unchanged. Defaultis [] (the null set,
no filtering - all codepoints are subject to normalization).

Example:

<anal yzer>
<charFilter class="solr.|ICUNormalizer2CharFilterFactory"/>

<t okeni zer ...>

[...]

</ anal yzer >

solr.PatternReplaceCharFilterFactory

This filter uses regular expressions to replace or change character patterns.
Arguments:

pat t er n: the regular expression pattern to apply to the incoming text.

r epl acenent : the text to use to replace matching patterns.

You can configure this filter in schema. xm like this:

<anal yzer >
<charFilter class="solr.PatternRepl aceCharFilterFactory"

pattern="([nNJ[oO\.)\s*(\d+)" replacenent="3$1%$2"/>
<t okeni zer ...>

[...]

</ anal yzer >

The table below presents examples of regex-based pattern replacement:

Input pattern replacement Output Description
see-ing looking (\w+) (i ng) $1 see-ing look Removes "ing" from the end of
word.
see-ing looking (\w+)i ng $1 see-ing look Same as above. 2nd

parentheses can be omitted.

No.1 NO. no. [N [oQ\.\s*(\d+) #$1 #1 NO. #543 Replace some string literals

543

abc=1234=5678 (\w+)=(\d+)=(\d+) $3=$1=%2 5678=abc=1234 Change the order of the
groups.

Related Topics

® CharFilterFactories

Language Analysis

This section contains information about tokenizers and filters related to character set conversion or for use with
specific languages. For the European languages, tokenization is fairly straightforward. Tokens are delimited by

Apache Solr Reference Guide 5.5 143

http://www.icu-project.org/apiref/icu4j/com/ibm/icu/text/UnicodeSet.html
http://www.regular-expressions.info/reference.html
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories

white space and/or a relatively small set of punctuation characters. In other languages the tokenization rules are
often not so simple. Some European languages may require special tokenization rules as well, such as rules for
decompounding German words.

For information about language detection at index time, see Detecting Languages During Indexing.
Topics discussed in this section:

KeywordMarkerFilterFactory

KeywordRepeatFilterFactory

StemmerOverrideFilterFactory

Dictionary Compound Word Token Filter

Unicode Collation

ASCII & Decimal Folding Filters

Language-Specific Factories

Related Topics

KeywordMarkerFilterFactory

Protects words from being modified by stemmers. A customized protected word list may be specified with the
"protected" attribute in the schema. Any words in the protected word list will not be modified by any stemmer in

Solr.

A sample Solr pr ot wor ds. t xt with comments can be found in the sanpl e_t echpr oduct s_confi gs config
set directory:

<fieldtype nane="nyfiel dtype" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r.KeywordMarkerFilterFactory" protected="protwords.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

KeywordRepeatFilterFactory

Emits each token twice, one with the KEYWORD attribute and once without. If placed before a stemmer, the result
will be that you will get the unstemmed token preserved on the same position as the stemmed one. Queries
matching the original exact term will get a better score while still maintaining the recall benefit of stemming.
Another advantage of keeping the original token is that wildcard truncation will work as expected.

To configure, add the Keywor dRepeat Fi | t er Fact ory early in the analysis chain. It is recommended to also
include RemoveDupl i cat esTokenFi | t er to avoid duplicates when tokens are not stemmed.

A sample fieldType configuration could look like this:

<fieldtype nane="engli sh_stem preserve_original" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.KeywordRepeatFilterFactory" />
<filter class="solr.PorterStenFilterFactory" />
<filter class="solr.RenoveDuplicatesTokenFilter" />
</ anal yzer >
</fieldtype>

Apache Solr Reference Guide 5.5 144

StemmerOverrideFilterFactory
Overrides stemming algorithms by applying a custom mapping, then protecting these terms from being modified
by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the "dictionary" attribute in
the schema. Words in this mapping will be stemmed to the stems from the file, and will not be further changed by
any stemmer.

A sample stemdict.txt with comments can be found in the Source Repository.
<fi el dtype nane="nyfiel dtype" class="solr. TextFiel d">
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.StemerOverrideFilterFactory" dictionary="stendict.txt" />
<filter class="solr.PorterStentilterFactory" />

</ anal yzer >
</fieldtype>

Dictionary Compound Word Token Filter

This filter splits, or decompounds, compound words into individual words using a dictionary of the component
words. Each input token is passed through unchanged. If it can also be decompounded into subwords, each
subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.
Factory class: sol r. Di cti onar yConpoundWor dTokenFi | t er Fact ory
Arguments:

di cti onary: (required) The path of a file that contains a list of simple words, one per line. Blank lines and lines
that begin with "#" are ignored. This path may be an absolute path, or path relative to the Solr config directory.

m nWor dSi ze: (integer, default 5) Any token shorter than this is not decompounded.
m nSubwor dSi ze: (integer, default 2) Subwords shorter than this are not emitted as tokens.
maxSubwor dSi ze: (integer, default 15) Subwords longer than this are not emitted as tokens.

onl yLongest Mat ch: (trueffalse) If true (the default), only the longest matching subwords will generate new
tokens.

Example:
Assume that ger nanwor ds. t xt contains at least the following words: dunm kopf donau danpf schiff
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.DictionaryConpoundWr dTokenFilterFactory"

di cti onary="ger manwords. txt"/>
</ anal yzer >

In: "Donaudampfschiff dummkopf"
Tokenizer to Filter: "Donaudampfschiff'(1), "dummkopf*(2),
Out: "Donaudampfschiff'(1), "Donau"(1), "dampf*(1), "schiff'(1), "dummkopf*(2), "dumm”(2), "kopf"(2)

Apache Solr Reference Guide 5.5 145

http://svn.apache.org/repos/asf/lucene/dev/trunk/solr/core/src/test-files/solr/collection1/conf/stemdict.txt

Unicode Collation

Unicode Collation is a language-sensitive method of sorting text that can also be used for advanced search
purposes.

Unicode Collation in Solr is fast, because all the work is done at index time.

Rather than specifying an analyzer within <fi el dtype ... class="solr. TextFi el d'>,thesolr.Coll a
tionFieldandsolr.|CUCol | ati onFi el d field type classes provide this functionality. sol r. | CUCol | ati o
nFi el d, which is backed by the ICU4J library, provides more flexible configuration, has more locales, is
significantly faster, and requires less memory and less index space, since its keys are smaller than those
produced by the JDK implementation that backs sol r. Col | ati onFi el d.

sol r. 1 CUCol | ati onFi el d is included in the Solr anal ysi s- extras contrib - see sol r/ contri b/ anal ys
i s-extras/ README. t xt for instructions on which jars you need to add to your SOLR_HOVE/ | i b in order to
use it.

solr. 1 CUCol | ati onFi el d and sol r. Col | at i onFi el d fields can be created in two ways:

® Based upon a system collator associated with a Locale.
® Based upon a tailored Rul eBasedCol | at or ruleset.

Arguments for sol r. 1 CUCol | at i onFi el d, specified as attributes within the <fi el dt ype> element:
Using a System collator:
| ocal e: (required) RFC 3066 locale ID. See the ICU locale explorer for a list of supported locales.

strengt h: Valid values are pri mary, secondary, terti ary, quat ernary, ori denti cal . See Comparison
Levels in ICU Collation Concepts for more information.

deconposi ti on: Valid values are no or canoni cal . See Normalization in ICU Collation Concepts for more
information.

Using a Tailored ruleset:
cust om (required) Path to a UTF-8 text file containing rules supported by the ICU Rul eBasedCol | at or

st rengt h: Valid values are pri mary, secondary, tertiary, quaternary, ori denti cal . See Comparison
Levels in ICU Collation Concepts for more information.

deconposi ti on: Valid values are no or canoni cal . See Normalization in ICU Collation Concepts for more
information.

Expert options:
al t er nat e: Valid values are shi f t ed or non-i gnor abl e. Can be used to ignore punctuation/whitespace.

caselevel : (truef/false) If true, in combination with st r engt h="pri mary", accents are ignored but case is
taken into account. The default is false. See CaselLevel in ICU Collation Concepts for more information.

caseFi r st : Valid values are | ower or upper . Useful to control which is sorted first when case is not ignored.

nuneri c: (true/false) If true, digits are sorted according to numeric value, e.g. foobar-9 sorts before foobar-10.
The default is false.

var i abl eTop: Single character or contraction. Controls what is variable for al t er nat e

Sorting Text for a Specific Language

In this example, text is sorted according to the default German rules provided by ICU4J.

Locales are typically defined as a combination of language and country, but you can specify just the language if

Apache Solr Reference Guide 5.5 146

http://site.icu-project.org
http://www.rfc-editor.org/rfc/rfc3066.txt
http://demo.icu-project.org/icu-bin/locexp
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Normalization
http://icu-project.org/apiref/icu4j/com/ibm/icu/text/RuleBasedCollator.html
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Normalization
http://userguide.icu-project.org/collation/concepts#TOC-CaseLevel

you want. For example, if you specify "de" as the language, you will get sorting that works well for the German
language. If you specify "de" as the language and "CH" as the country, you will get German sorting specifically
tailored for Switzerland.

<!-- Define a field type for German collation -->
<fiel dType nane="col | at edCERVAN' cl ass="solr.| CUCol | ati onFi el d"
| ocal e="de"

strength="primary" />

<l-- Define a field to store the Gernman col |l ated nmanufacturer nanes. -->
<field nane="nmanuGERMAN' type="col | at edGERVAN"' i ndexed="fal se" stored="fal se"
docVal ues="true"/ >

<I-- Copy the text to this field. W could create French, English, Spanish versions
t oo,

and sort differently for different users! -->
<copyFi el d source="manu" dest ="nanuGERVAN"/ >

In the example above, we defined the strength as "primary”. The strength of the collation determines how strict
the sort order will be, but it also depends upon the language. For example, in English, "primary" strength ignores
differences in case and accents.

Another example:
<fi el dType nane="pol i shCasel nsensitive" class="solr.|CUCol | ationFi el d"

| ocal e="pl _PL"
strengt h="secondary" />

<field nane="city" type="text_general" indexed="true" stored="true"/>
<field nane="city_sort" type="polishCasel nsensitive" indexed="true" stored="fal se"/>

<copyFi el d source="city" dest="city_sort"/>

The type will be used for the fields where the data contains Polish text. The "secondary" strength will ignore case
differences, but, unlike "primary" strength, a letter with diacritic(s) will be sorted differently from the same base
letter without diacritics.

An example using the "city_sort" field to sort:

g=*:*&f | =city&sort=city_sort +asc

Sorting Text for Multiple Languages

There are two approaches to supporting multiple languages: if there is a small list of languages you wish to
support, consider defining collated fields for each language and using copyFi el d. However, adding a large
number of sort fields can increase disk and indexing costs. An alternative approach is to use the Unicode def au
I t collator.

The Unicode def aul t or ROOT locale has rules that are designed to work well for most languages. To use the d
ef aul t locale, simply define the locale as the empty string. This Unicode default sort is still significantly more
advanced than the standard Solr sort.

Apache Solr Reference Guide 5.5 147

<fi el dType nane="col | at edROOT" cl ass="solr. | CUCol | ati onFi el d"
| ocal e=""
strengt h="primary" />

Sorting Text with Custom Rules

You can define your own set of sorting rules. It's easiest to take existing rules that are close to what you want
and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set treats umlauts in
German differently: it treats 6 as equivalent to oe, & as equivalent to ae, and U as equivalent to ue. For more
information, see the ICU RuleBasedCollator javadocs.

This example shows how to create a custom rule set for sol r. | CUCol | ati onFi el d and dump it to a file:

/'l get the default rules for Germany

/'l these are called DIN 5007-1 sorting

Rul eBasedCol | at or baseCol | ator = (Rul eBasedCol | ator) Col | ator. getlnstance(new
ULocal e("de", "DE"));

/1 define some tailorings, to make it DI N 5007-2 sorting.
/'l For exanple, this makes 6 equivalent to oe
String DIN5007_2 tailorings =

"& ae , a\u0308 & AE , A\ u0308"+

"& oe , o\u0308 & CE , O u0308"+

"& ue , u\u0308 & UE , u\u0308";

/'l concatenate the default rules to the tailorings, and dunp it to a String

Rul eBasedCol | ator tail oredCollator = new Rul eBasedCol | at or (baseCol | at or. get Rul es() +
DI N5007_2_tail orings);

String tailoredRul es = tailoredColl ator. get Rul es();

/1 wite these to a file, be sure to use UTF-8 encoding!!!
Fi | eQut put St ream os = new Fi | eQut put St r ean(new
File("/solr_hone/conf/custonRul es. dat"));
IOUtils.wite(tailoredRules, os, "UTF-8");

This rule set can now be used for custom collation in Solr:

<fiel dType nane="col | at edCUSTOM' cl ass="sol r. | CUCol | ati onFi el d"
cust on¥"cust onRul es. dat "
strengt h="primary" />

JDK Collation

As mentioned above, ICU Unicode Collation is better in several ways than JDK Collation, but if you cannot use
ICU4J for some reason, you can use sol r. Col | ati onFi el d.

The principles of JDK Collation are the same as those of ICU Collation; you just specify | anguage, count ry an
d vari ant arguments instead of the combined | ocal e argument.

Arguments for sol r. Col | at i onFi el d, specified as attributes within the <f i el dt ype> element:

Using a System collator (see Oracle's list of locales supported in Java 7):

Apache Solr Reference Guide 5.5 148

http://icu-project.org/apiref/icu4j/com/ibm/icu/text/RuleBasedCollator.html
http://www.oracle.com/technetwork/java/javase/javase7locales-334809.html

| anguage: (required) ISO-639 language code
count ry: 1ISO-3166 country code
vari ant : Vendor or browser-specific code

st rengt h: Valid values are pri mary, secondary, tertiary ori denti cal . See Oracle Java 7 Collator
javadocs for more information.

deconposi ti on: Valid values are no, canoni cal , or f ul | . See Oracle Java 7 Collator javadocs for more
information.

Using a Tailored ruleset:
cust om (required) Path to a UTF-8 text file containing rules supported by the JDK Rul eBasedCol | at or

st rengt h: Valid values are pri mary, secondary, tertiary ori denti cal . See Oracle Java 7 Collator
javadocs for more information.

deconposi ti on: Valid values are no, canoni cal , or f ul | . See Oracle Java 7 Collator javadocs for more
information.

A solr. Col | ati onFi el d example:
<fi el dType nane="col | at edGERMAN"' cl ass="solr. Col | ati onFi el d"
| anguage="de"
count ry="DE"

strength="primary" /> <l-- ignore Ur auts and | etter case when sorting
-->

<field name="nmanuCGERMAN' type="col | at edCERVAN' i ndexed="fal se" stored="fal se"
docVal ues="true" />

<copyFi el d source="manu" dest ="nanuGERVAN"/ >

ASCII & Decimal Folding Filters

Ascii Folding

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the first 127 ASCII
characters (the "Basic Latin" Unicode block) into their ASCII equivalents, if one exists. Only those characters with
reasonable ASCII alternatives are converted.

This can increase recall by causing more matches. On the other hand, it can reduce precision because
language-specific character differences may be lost.

Factory class: sol r. ASCl | Fol di ngFi | t er Factory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.ASClIFol dingFilterFactory"/>
</ anal yzer >

In: "Bjérn Angstrom"

Apache Solr Reference Guide 5.5 149

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/7/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html

Tokenizer to Filter: "Bjorn", "Angstrom"

Out: "Bjorn", "Angstrom"

Decimal Digit Folding

This filter converts any character in the Unicode "Decimal Number" general category (" Nd") into their equivalent
Basic Latin digits (0-9).

This can increase recall by causing more matches. On the other hand, it can reduce precision because
language-specific character differences may be lost.

Factory class: sol r. Decimal DigitFi | t er Fact ory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.DecinalDigitFilterFactory"/>
</ anal yzer >

Language-Specific Factories

These factories are each designed to work with specific languages. The languages covered here are:
® Arabic

Brazilian Portuguese

Bulgarian

Catalan

Chinese

Simplified Chinese

CJK

Czech

Danish

Dutch

Finnish

French

Galician

German

Greek

Hebrew, Lao, Myanmar, Khmer

Hindi

Indonesian

Italian

Irish

Japanese

Latvian

Norwegian

Persian

Polish

Portuguese

Romanian

Russian

Scandinavian

Apache Solr Reference Guide 5.5 150

Serbian
Spanish
Swedish
Thai
Turkish

Arabic

Solr provides support for the Light-10 (PDF) stemming algorithm, and Lucene includes an example stopword list.

This algorithm defines both character normalization and stemming, so these are split into two filters to provide
more flexibility.

Factory classes: sol r. Arabi cStenti | t er Fact ory, sol r. Arabi cNormal i zati onFi |l t er Fact ory
Arguments: None
Example:
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ArabicNornalizationFilterFactory"/>

<filter class="solr.ArabicStenFilterFactory"/>
</ anal yzer >

Brazilian Portuguese

This is a Java filter written specifically for stemming the Brazilian dialect of the Portuguese language. It uses the
Lucene class or g. apache. | ucene. anal ysi s. br. Brazi | i anSt emmer . Although that stemmer can be
configured to use a list of protected words (which should not be stemmed), this factory does not accept any
arguments to specify such a list.

Factory class: sol r. Brazi li anStenfFil t er Fact ory
Arguments: None
Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.BrazilianStenFilterFactory"/>
</ anal yzer >

In: "praia praias”

Tokenizer to Filter: "praia”, "praias"

Out: "pra", "pra"

Bulgarian

Solr includes a light stemmer for Bulgarian, following this algorithm (PDF), and Lucene includes an example
stopword list.

Factory class: sol r. Bul gari anStentFi |l t er Fact ory

Arguments: None

Apache Solr Reference Guide 5.5 151

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf
http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.BulgarianStenFilterFactory"/>
</ anal yzer >

Catalan

Solr can stem Catalan using the Snowball Porter Stemmer with an argument of | anguage="Cat al an" . Solr
includes a set of contractions for Catalan, which can be stripped using sol r. El i si onFi | t er Factory.

Factory class: sol r. Snowbal | PorterFilterFactory

Arguments:

| anguage: (required) stemmer language, "Catalan" in this case

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_ca.txt"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Catal an" />
</ anal yzer >
In: "llengles llengua”
Tokenizer to Filter: "llenglies”(1) "llengua”(2),

Out: "llengu"(1), "llengu"(2)
Chinese

Chinese Tokenizer

The Chinese Tokenizer is deprecated as of Solr 3.4. Use the sol r. St andar dTokeni zer Fact or y instead.
Factory class: sol r. Chi neseTokeni zer Fact ory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Chi neseTokeni zer Factory"/>
</ anal yzer>

Chinese Filter Factory
The Chinese Filter Factory is deprecated as of Solr 3.4. Use the sol r. St opFi | t er Fact or y instead.

Factory class: sol r. Chi neseFi | t er Factory

Apache Solr Reference Guide 5.5 152

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-StandardTokenizer
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-StopFilter

Arguments: None
Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.ChineseFilterFactory"/>
</ anal yzer >

Simplified Chinese

For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the sol r. HWC
hi neseTokeni zer Fact ory in the anal ysi s- ext r as contrib module. This component includes a large
dictionary and segments Chinese text into words with the Hidden Markov Model. To use this filter, see sol r/ co
ntri b/ anal ysi s- extras/ README. t xt for instructions on which jars you need to add to your sol r _hone/ |
i b.

Factory class: sol r. HWEChi neseTokeni zer Fact ory

Arguments: None

Examples:

To use the default setup with fallback to English Porter stemmer for English words, use:

<anal yzer cl ass="org. apache. | ucene. anal ysi s.cn. snart. Smart Chi neseAnal yzer"/>

Or to configure your own analysis setup, use the sol r . HWChi neseTokeni zer Fact or y along with your
custom filter setup.

<anal yzer >
<t okeni zer cl ass="sol r. HWChi neseTokeni zer Fact ory"/ >
<filter class="solr.StopFilterFactory
wor ds="or g/ apache/ | ucene/ anal ysi s/ cn/ smart/stopwords. txt"/>
<filter class="solr.PorterStenFilterFactory"/>
</ anal yzer >

CJK

This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not whitespace
delimited languages. The tokens generated by this tokenizer are "doubles"”, overlapping pairs of CJK characters
found in the field text.

Factory class: sol r. CJKTokeni zer Fact ory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. CJKTokeni zer Fact ory"/ >
</ anal yzer >

Czech

Apache Solr Reference Guide 5.5 153

Solr includes a light stemmer for Czech, following this algorithm, and Lucene includes an example stopword list.
Factory class: sol r. CzechStenFi | t er Factory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.CzechStenFilterFactory"/>

<anal yzer >

In: "prezidensti, prezidenta, prezidentského"

Tokenizer to Filter: "prezidensti", "prezidenta”, "prezidentského"

Out: "preziden”, "preziden”, "preziden"

Danish

Solr can stem Danish using the Snowball Porter Stemmer with an argument of | anguage="Dani sh".
Also relevant are the Scandinavian normalization filters.

Factory class: sol r. Snowbal | PorterFilterFactory

Arguments:

| anguage: (required) stemmer language, "Danish" in this case

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Danish" />

</ anal yzer>

In: "undersgg undersggelse”
Tokenizer to Filter: "undersgg"(1) "undersggelse”(2),

Out: "undersgg"(1), "undersgg"(2)

Dutch
Solr can stem Dutch using the Snowball Porter Stemmer with an argument of | anguage="Dut ch" .
Factory class: sol r. Snowbal | PorterFil terFactory

Arguments:

| anguage: (required) stemmer language, "Dutch" in this case

Example:

Apache Solr Reference Guide 5.5 154

https://dl.acm.org/citation.cfm?id=1598600

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Dutch"/>

</ anal yzer >

In: "kanaal kanalen"
Tokenizer to Filter: "kanaal", "kanalen"

Out: "kanal", "kanal"

Finnish

Solr includes support for stemming Finnish, and Lucene includes an example stopword list.
Factory class: sol r. Fi nni shLi ght St enFi | t er Fact ory

Arguments: None

Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.FinnishLightStenFilterFactory"/>
</ anal yzer >

In: "kala kalat"
Tokenizer to Filter: "kala", "kalat"

Out: "kala", "kala"

French

Elision Filter

Removes article elisions from a token stream. This filter can be useful for languages such as French, Catalan,
Italian, and Irish.

Factory class: sol r. El i si onFi | t er Factory

Arguments:

articl es: The pathname of a file that contains a list of articles, one per line, to be stripped. Articles are words
such as "le", which are commonly abbreviated, such as in l'avion (the plane). This file should include the
abbreviated form, which precedes the apostrophe. In this case, simply "I'. If no ar ti cl es attribute is specified, a
default set of French articles is used.

i gnor eCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word
file. Defaults to f al se

Example:

Apache Solr Reference Guide 5.5 155

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ElisionFilterFactory"
i gnor eCase="true"
articles="lang/contractions_fr.txt"/>
</ anal yzer >

In: "L'histoire d'art"
Tokenizer to Filter: "L'histoire", "d'art"

Out: "histoire", "art"

French Light Stem Filter

Solr includes three stemmers for French: one in the sol r. Snowbal | Porter Fi | t er Fact ory, a lighter
stemmer called sol r. FrenchLi ght St enFi | t er Fact ory, and an even less aggressive stemmer called sol r
. FrenchM ni mal St enFi | t er Fact ory. Lucene includes an example stopword list.

Factory classes: sol r. FrenchLi ght Stenti | t er Fact ory, sol r. FrenchM ni mal StenFi | t er Factory
Arguments: None

Examples:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_fr.txt"/>
<filter class="solr.FrenchLightStentilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_fr.txt"/>
<filter class="solr.FrenchM ni mal Stent¥ilterFactory"/>
</ anal yzer >

In: "le chat, les chats"

Tokenizer to Filter: "le", "chat", "les", "chats"

Out: "le", "chat", "le", "chat"

Galician

Solr includes a stemmer for Galician following this algorithm, and Lucene includes an example stopword list.
Factory class: sol r. Gal i ci anStenti | t er Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 5.5 156

http://bvg.udc.es/recursos_lingua/stemming.jsp

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.GalicianStentilterFactory"/>
</ anal yzer >

In: "felizmente Luzes"

Tokenizer to Filter: "felizmente", "luzes"

Out: "feliz", "luz"

German

Solr includes four stemmers for German: one in the sol r. Snowbal | PorterFi |l t er Factory

| anguage="Ger man", a stemmer called sol r. Ger manSt entFi | t er Fact ory, a lighter stemmer called sol r.
Ger manLi ght St enFi | t er Fact ory, and an even less aggressive stemmer called sol r. Ger manM ni mal St
enti | t er Fact ory. Lucene includes an example stopword list.

Factory classes: sol r. GermanSt enti | t er Fact ory, sol r. Li ght GermanSt enfi | t er Factory, solr. M
i ni mal GermanSt enti |l terFactory

Arguments: None
Examples:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >

<filter class="solr.GermanStentilterFactory"/>
</ anal yzer >

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.GernmanLi ght StenfilterFactory"/>
</ anal yzer >

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.GermanM ni mal StenFilterFactory"/>
</ anal yzer >
In: "haus hauser"
Tokenizer to Filter: "haus”, "hauser"

Out: "haus", "haus"

Greek

This filter converts uppercase letters in the Greek character set to the equivalent lowercase character.
Factory class: sol r. G eekLower CaseFi | t er Fact ory

Arguments: None

Apache Solr Reference Guide 5.5 157

1. Use of custom charsets is not longer supported as of Solr 3.1. If you need to index text in these
encodings, please use Java's character set conversion facilities (InputStreamReader, and so on.) during
I/O, so that Lucene can analyze this text as Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.G eekLower CaseFilterFactory"/>
</ anal yzer >

Hindi

Solr includes support for stemming Hindi following this algorithm (PDF), support for common spelling differences
through the sol r. Hi ndi Nor mal i zat i onFi | t er Fact ory, support for encoding differences through the sol r

.I'ndi cNornmal i zati onFi | t er Fact or y following this algorithm, and Lucene includes an example stopword
list.

Factory classes: sol r. | ndi cNornal i zati onFi | t er Fact ory, sol r. Hi ndi Nor mal i zati onFi | t er Fac
tory,solr.H ndi StenfilterFactory

Arguments: None
Example:
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.IndicNormalizationFilterFactory"/>
<filter class="solr.H ndi NormalizationFilterFactory"/>

<filter class="solr.H ndi StenFilterFactory"/>
</ anal yzer >

Indonesian

Solr includes support for stemming Indonesian (Bahasa Indonesia) following this algorithm (PDF), and Lucene
includes an example stopword list.

Factory class: sol r. | ndonesi anSt enFi | t er Fact ory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.I|ndonesianStenFilterFactory" stenDerivational ="true" />
</ anal yzer >
In: "sebagai sebagainya"
Tokenizer to Filter: "sebagai”, "sebagainya"

Out: "bagai", "bagai"

Apache Solr Reference Guide 5.5 158

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html
http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

[talian

Solr includes two stemmers for Italian: one in the sol r. Snowbal | PorterFil ter Factory
| anguage="1tal i an", and a lighter stemmer called sol r. I t al i anLi ght St enti | t er Fact ory. Lucene
includes an example stopword list.

Factory class: solr.ItalianStenFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions _ it.txt"/>
<filter class="solr.ItalianLightStenFilterFactory"/>
</ anal yzer >

In: "propaga propagare propagamento”

Tokenizer to Filter: "propaga”, "propagare”, "propagamento”

Out: "propag", "propag", "propag"

Irish

Solr can stem lIrish using the Snowball Porter Stemmer with an argument of | anguage="1ri sh". Solr includes
solr.lrishLower CaseFi |l t er Fact ory, which can handle Irish-specific constructs. Solr also includes a set
of contractions for Irish which can be stripped using sol r. El i si onFi | t er Fact ory.

Factory class: sol r. Snowbal | PorterFilter Factory
Arguments:
| anguage: (required) stemmer language, "lrish" in this case

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_ga.txt"/>
<filter class="solr.IrishLowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Irish" />
</ anal yzer >

In: "siopaddireacht siceapatacha b'thearr m'athair"

Tokenizer to Filter: "siopadoireacht", "siceapatacha"”, "b'fhearr", "m'athair"

Out: "siopadoir”, "siceapaite", "fearr", "athair"

Japanese

Solr includes support for analyzing Japanese, via the Lucene Kuromoji morphological analyzer, which includes
several analysis components - more details on each below:

Apache Solr Reference Guide 5.5 159

® Japanesel terati onMar kChar Fi | t er normalizes Japanese horizontal iteration marks (odoriji) to their
expanded form.

® JapaneseTokeni zer tokenizes Japanese using morphological analysis, and annotates each term with
part-of-speech, base form (a.k.a. lemma), reading and pronunciation.

® JapaneseBaseFor nFi | t er replaces original terms with their base forms (a.k.a. lemmas).

® JapanesePart O SpeechSt opFi | t er removes terms that have one of the configured parts-of-speech.

® JapaneseKat akanaSt enfi | t er normalizes common katakana spelling variations ending in a long
sound character (U+30FC) by removing the long sound character.

Also useful for Japanese analysis, from lucene-analyzers-common:
® CIJKW dt hFi | t er folds fullwidth ASCII variants into the equivalent Basic Latin forms, and folds halfwidth

Katakana variants into their equivalent fullwidth forms.

Japanese lteration Mark CharFilter

Normalizes horizontal Japanese iteration marks (odoriji) to their expanded form. Vertical iteration marks are not
supported.

Factory class: Japanesel t erati onMar kChar Fi | t er Fact ory
Arguments:
nor mal i zeKanj i : setto f al se to not normalize kaniji iteration marks (defaultis t r ue)

nor mal i zeKana: set to f al se to not normalize kana iteration marks (default is t r ue)

Japanese Tokenizer

Tokenizer for Japanese that uses morphological analysis, and annotates each term with part-of-speech, base
form (a.k.a. lemma), reading and pronunciation.

JapaneseTokeni zer has a sear ch mode (the default) that does segmentation useful for search: a heuristic is
used to segment compound terms into their constituent parts while also keeping the original compound terms as
synonyms.

Factory class: sol r. JapaneseTokeni zer Fact ory
Arguments:

node: Use sear ch mode to get a noun-decompounding effect useful for search. sear ch mode improves
segmentation for search at the expense of part-of-speech accuracy. Valid values for node are:

® nor nal : default segmentation
® sear ch: segmentation useful for search (extra compound splitting)
® ext ended: search mode plus unigramming of unknown words (experimental)

For some applications it might be good to use sear ch mode for indexing and nor mal mode for queries to
increase precision and prevent parts of compounds from being matched and highlighted.

user Di cti onar y: filename for a user dictionary, which allows overriding the statistical model with your own
entries for segmentation, part-of-speech tags and readings without a need to specify weights. See | ang/ userd
i ct_ja.txt fora sample user dictionary file.

user Di cti onar yEncodi ng: user dictionary encoding (default is UTF-8)

di scardPunct uati on: setto f al se to keep punctuation, t r ue to discard (the default)

Japanese Base Form Filter

Replaces original terms' text with the corresponding base form (lemma). (JapaneseTokeni zer annotates
each term with its base form.)

Apache Solr Reference Guide 5.5 160

Factory class: JapaneseBaseFor nFi | t er Fact ory

(no arguments)

Japanese Part Of Speech Stop Filter

Removes terms with one of the configured parts-of-speech. JapaneseTokeni zer annotates terms with
parts-of-speech.

Factory class : JapanesePart Of SpeechSt opFi | t er Fact ory
Arguments:

t ags: filename for a list of parts-of-speech for which to remove terms; see conf /| ang/ st opt ags_j a. t xt in
the sanpl e_t echpr oduct s_confi g config set for an example.

enabl ePosi ti onl ncrenent s: if | uceneMat chVer si on is 4. 3 or earlier and enabl ePosi ti onl ncr enent
s="f al se", no position holes will be left by this filter when it removes tokens. This argument is invalid if | uc
eneMat chVer si onis 5. 0 or later.

Japanese Katakana Stem Filter

Normalizes common katakana spelling variations ending in a long sound character (U+30FC) by removing the
long sound character.

CIKW dt hFi | t er Fact ory should be specified prior to this filter to normalize half-width katakana to full-width.
Factory class: JapaneseKat akanaSt enti | t er Fact ory
Arguments:

nmi ni nuLengt h: terms below this length will not be stemmed. Default is 4, value must be 2 or more.

CJK Width Filter

Folds fullwidth ASCII variants into the equivalent Basic Latin forms, and folds halfwidth Katakana variants into
their equivalent fullwidth forms.

Factory class: CJKW dt hFi | t er Fact ory

(no arguments)

Example:

Apache Solr Reference Guide 5.5 161

<fiel dType nane="text _ja" positionlncrenent Gap="100"
aut oGener at ePhr aseQueri es="fal se" >
<anal yzer>
<l-- Uncomment if you need to handle iteration marks: -->
<I-- <charFilter class="solr.Japaneselterati onMarkCharFilterFactory" /> -->
<t okeni zer cl ass="sol r.JapaneseTokeni zer Fact ory" node="search"
userDictionary="Ilang/userdict_ja.txt"/>
<filter class="solr.JapaneseBaseFornFilterFactory"/>
<filter class="solr.JapanesePart O SpeechSt opFi |l t er Fact ory"
tags="1ang/stoptags_ja.txt"/>
<filter class="solr.CIKWdthFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="| ang/ st opwords_j a.txt"/>
<filter class="solr.JapaneseKat akanaStentilterFactory" m ni munLength="4"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

Hebrew, Lao, Myanmar, Khmer

Lucene provides support, in addition to UAX#29 word break rules, for Hebrew's use of the double and single
guote characters, and for segmenting Lao, Myanmar, and Khmer into syllables with the sol r. | CUTokeni zer F
act ory in the anal ysi s- ext r as contrib module. To use this tokenizer, see sol r/ cont ri b/ anal ysi s- ext
ras/ README. t xt f or instructions on which jars you need to add to your sol r _hon®/ | i b.

See the ICUTokenizer for more information.

Latvian

Solr includes support for stemming Latvian, and Lucene includes an example stopword list.
Factory class: sol r. Lat vi anSt enFi | t er Fact ory
Arguments: None
Example:
<fiel dType nane="text |vsten!' class="solr.TextField" positionlncrenentGp="100">
<anal yzer >

<t okeni zer class="solr. StandardTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.LatvianStenFilterFactory"/>

</ anal yzer >
</fiel dType>

In: "tirgiem tirgus"

Tokenizer to Filter: "tirgiem", "tirgus"

Out: "tirg", "tirg"

Norwegian

Solr includes two classes for stemming Norwegian, Nor wegi anLi ght St enFi | t er Fact ory and Nor wegi anM
i ni mal StenfilterFactory. Lucene includes an example stopword list.

Apache Solr Reference Guide 5.5 162

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-ICUTokenizer

Another option is to use the Snowball Porter Stemmer with an argument of language="Norwegian".

Also relevant are the Scandinavian normalization filters.

Norwegian Light Stemmer

The Nor wegi anLi ght St enfi | t er Fact ory requires a "two-pass" sort for the -dom and -het endings. This
means that in the first pass the word "kristendom" is stemmed to "kristen”, and then all the general rules apply so
it will be further stemmed to "krist". The effect of this is that "kristen," "kristendom," "kristendommen," and
"kristendommens" will all be stemmed to "krist."

The second pass is to pick up -dom and -het endings. Consider this example:

One pass Two passes
Before After Before After
forlegen forleg forlegen forleg
forlegenhet forlegen forlegenhet forleg

forlegenheten forlegen forlegenheten forleg
forlegenhetens forlegen forlegenhetens forleg
firkantet firkant firkantet firkant
firkantethet firkantet firkantethet firkant

firkantetheten firkantet firkantetheten firkant

Factory class: sol r. Norwegi anLi ght St enfi | t er Fact ory
Arguments: vari ant : Choose the Norwegian language variant to use. Valid values are:

* nb: Bokmal (default)
® nn: Nynorsk
® no: both

Example:

<fiel dType nane="text _no" class="solr. TextFi el d' positionlncrenentGp="100">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="1 ang/ st opwords_no. txt" format="snowbal | "/ >
<filter class="sol r.Norwegi anLi ght StenFi | ter Factory"/>
</ anal yzer >
</fieldType>

In: "Forelskelsen"
Tokenizer to Filter: "forelskelsen"

Out: "forelske"

Norwegian Minimal Stemmer

The Nor wegi anM ni nmal St enFi | t er Fact or y stems plural forms of Norwegian nouns only.

Apache Solr Reference Guide 5.5 163

Factory class: sol r. Nor wegi anM ni mal St enti | t er Fact ory
Arguments: vari ant : Choose the Norwegian language variant to use. Valid values are:

* nb: Bokmal (default)
® nn: Nynorsk
® no: both

Example:

<fiel dType nane="text _no" class="solr. TextFi el d' positionlncrenentGp="100">
<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="| ang/ st opwords_no. t xt" format="snowbal | "/ >
<filter class="solr.Norwegi anM ni mal Stenti |l terFactory"/>
</ anal yzer >
</fieldType>

In: "Bilens"

Tokenizer to Filter: "bilens"

Out: "bil"

Persian

Persian Filter Factories

Solr includes support for normalizing Persian, and Lucene includes an example stopword list.
Factory class: sol r. Per si anNor nal i zati onFi | t er Fact ory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
<filter class="solr.ArabicNornalizationFilterFactory"/>
<filter class="solr.PersianNornalizationFilterFactory">
</ anal yzer >

Polish

Solr provides support for Polish stemming with the sol r. St enpel Pol i shSt enFi | t er Fact ory, and solr. M
or phol ogi kFi | t er Fact ory for lemmatization, in the cont ri b/ anal ysi s- ext ras module. The solr. Ste
npel Pol i shSt enFi | t er Fact ory component includes an algorithmic stemmer with tables for Polish. To use
either of these filters, see sol r/ contri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you
need to add to your sol r _hone/ | i b.

Factory class: sol r. St enpel Pol i shStenti | t er Fact ory and sol r. Mor f ol ogi kFi | t er Fact ory

Arguments: None

Example:

Apache Solr Reference Guide 5.5 164

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Stenpel PolishStentilterFactory"/>
</ anal yzer >

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.Mrfologi kFilterFactory" dictionary-resource="pl"/>
</ anal yzer >

In: "'studenta studenci”

Tokenizer to Filter: "studenta", "studenci”
Out: "student”, "student"
More information about the Stempel stemmer is available in the Lucene javadocs.

The Morfologik di cti onary-r esour ce param value is a constant specifying which dictionary to choose.
The dictionary resource must be named nor f ol ogi k/ di cti onari es/{di cti onaryResource}. di ct and
have an associated . i nf o metadata file. See the Morfologik project for details.

Portuguese

Solr includes four stemmers for Portuguese: one in the sol r. Snowbal | PorterFi | t er Factory, an
alternative stemmer called sol r. Port ugueseSt enti | t er Fact ory, a lighter stemmer called sol r. Port ugu
eselLi ght StenFi | t er Fact ory, and an even less aggressive stemmer called sol r. Port ugueseM ni mal S
tenFi | t er Fact ory. Lucene includes an example stopword list.

Factory classes: sol r. Port ugueseSt enFi | t er Fact ory, sol r. Port ugueselLi ght St enFi | t er Fact or
y, sol r. PortugueseM ni mal Stenti |l t er Fact ory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. PortugueseStentilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. PortugueselLi ghtStentilterFactory"/>
</ anal yzer >

Apache Solr Reference Guide 5.5 165

http://lucene.apache.org/core/5_5_0/analyzers-stempel/index.html
http://morfologik.blogspot.com/

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PortugueseM ni mal StenFilterFactory"/>

</ anal yzer >

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Romanian

Solr can stem Romanian using the Snowball Porter Stemmer with an argument of | anguage=" Ronani an
Factory class: sol r. Snowbal | PorterFilterFactory

Arguments:

| anguage: (required) stemmer language, "Romanian" in this case

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Romani an" />

</ anal yzer >

Russian

Russian Stem Filter

Solr includes two stemmers for Russian: one in the sol r. Snowbal | PorterFil terFactory

| anguage="Russi an", and a lighter stemmer called sol r. Russi anLi ght St enti | t er Fact ory. Lucene
includes an example stopword list.

Factory class: sol r. Russi anLi ght StenFi | t er Factory

Arguments: None

1. Use of custom charsets is no longer supported as of Solr 3.4. If you need to index text in these
encodings, please use Java's character set conversion facilities (InputStreamReader, and so on.) during

I/O, so that Lucene can analyze this text as Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r.RussianLi ghtStenFilterFactory"/>

</ anal yzer >

Apache Solr Reference Guide 5.5 166

Scandinavian

Scandinavian is a language group spanning three languages Norwegian, Swedish and Danish which are very
similar.

Swedish 4,4,0 are in fact the same letters as Norwegian and Danish &,2e,8 and thus interchangeable when used
between these languages. They are however folded differently when people type them on a keyboard lacking
these characters.

In that situation almost all Swedish people use a, a, o instead of &, &, 6. Norwegians and Danes on the other
hand usually type aa, ae and oe instead of &, & and @. Some do however use a, a, 0, 00, ao and sometimes
permutations of everything above.

There are two filters for helping with normalization between Scandinavian languages: one is sol r. Scandi navi
anNor mal i zat i onFi | t er Fact ory trying to preserve the special characters (a24638) and another sol r . Scan
di navi anFol di ngFi | t er Fact or y which folds these to the more broad @/6->0 etc.

See also each language section for other relevant filters.

Scandinavian Normalization Filter

This filter normalize use of the interchangeable Scandinavian characters se££aA60g@ and folded variants (aa,
ao, ae, oe and 00) by transforming them to Az /AEod.

It's a semantically less destructive solution than Scandi navi anFol di ngFi | t er , most useful when a person

with a Norwegian or Danish keyboard queries a Swedish index and vice versa. This filter does not perform the
common Swedish folds of & and & to a nor 6 to o.

Factory class: sol r. Scandi navi anNor el i zati onFi | t er Fact ory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter class="sol r.Scandi navi anNor mal i zati onFi |l terFactory"/>
</ anal yzer>

In: "bldbaersyltetgj blabarsyltetdj blaabaarsyltetoej blabarsyltetoj"
Tokenizer to Filter: "blabeersyltetgj", "blabarsyltetdj”, "blaabaersyltetoej", "blabarsyltetoj"

Out: "blabaersyltetgj", "blabeersylteta", "blabaersyltetgj", "blabarsyltetoj"

Scandinavian Folding Filter

This filter folds Scandinavian characters 8AaaeA/E->a and 60@@->o0. It also discriminate against use of double
vowels aa, ae, ao, oe and 0o, leaving just the first one.

It's is a semantically more destructive solution than Scandi navi anNor mal i zati onFi | t er, but can in
addition help with matching raksmorgas as raksmorgas.

Factory class: sol r. Scandi navi anFol di ngFi | t er Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 5.5 167

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Scandi navi anFol di ngFi | ter Factory"/>
</ anal yzer >

In: "blabaersyltetgj bldbarsyltetdj blaabaarsyltetoej blabarsyltetoj"

Tokenizer to Filter: "blabeersyltetgj", "blabarsyltetdj”, "blaabaersyltetoej", "blabarsyltetoj"

Out: "blabarsyltetoj”, "blabarsyltetoj", "blabarsyltetoj", "blabarsyltetoj"

Serbian

Serbian Normalization Filter

Solr includes a filter that normalizes Serbian Cyrillic and Latin characters. Note that this filter only works with
lowercased input.

See the Solr wiki for tips & advice on using this filter: https://wiki.apache.org/solr/SerbianLanguageSupport
Factory class: sol r. Ser bi anNor nal i zati onFi | t er Factory
Arguments: hai r cut : Select the extend of normalization. Valid values are:

® bald: (Default behavior) Cyrillic characters are first converted to Latin; then, Latin characters have their
diacritics removed, with the exception of "LATIN SMALL LETTER D WITH STROKE" (U+0111) which is
converted to "dj "

® regul ar: Only Cyrillic to Latin normalization will be applied, preserving the Latin diatrics

Example:
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.SerbianNormalizationFilterFactory" haircut="bald"/>
</ anal yzer >

Spanish

Solr includes two stemmers for Spanish: one in the sol r. Snowbal | PorterFil ter Factory
| anguage="Spani sh", and a lighter stemmer called sol r. Spani shLi ght St en¥i | t er Fact ory. Lucene
includes an example stopword list.

Factory class: sol r. Spani shSt enFi | t er Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 5.5 168

https://wiki.apache.org/solr/SerbianLanguageSupport
https://en.wikipedia.org/wiki/D_with_stroke

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. Spani shLi ghtStenFilterFactory"/>
</ anal yzer >

In: "torear toreara torearlo"
Tokenizer to Filter: "torear", "toreara", "torearlo"

Out: "tor", "tor", "tor"

Swedish

Swedish Stem Filter

Solr includes two stemmers for Swedish: one in the sol r. Snowbal | PorterFi |l ter Factory
| anguage="Swedi sh", and a lighter stemmer called sol r. Swedi shLi ght St enti | t er Fact ory. Lucene
includes an example stopword list.

Also relevant are the Scandinavian normalization filters.
Factory class: sol r. Swedi shSt enFi | t er Fact ory
Arguments: None
Example:
<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.SwedishLightStenfilterFactory"/>
</ anal yzer >

In: "kloke klokhet klokheten"

Tokenizer to Filter: "kloke", "klokhet", "klokheten"

Out: "klok", "klok", "klok"

Thai

This filter converts sequences of Thai characters into individual Thai words. Unlike European languages, Thai
does not use whitespace to delimit words.

Factory class: sol r. Thai Tokeni zer Fact ory
Arguments: None
Example:
<anal yzer type="index">
<t okeni zer class="solr. Thai Tokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >

Apache Solr Reference Guide 5.5 169

Turkish

Solr includes support for stemming Turkish through the sol r. Snowbal | Port er Fi | t er Fact or y; support for
case-insensitive search through the sol r. Tur ki shLower CaseFi | t er Fact or y; support for stripping
apostrophes and following suffixes through sol r . Apost r opheFi | t er Fact ory (see Role of Apostrophes in
Turkish Information Retrieval); support for a form of stemming that truncating tokens at a configurable maximum
length through the solr.TruncateTokenFilterFactory (see Information Retrieval on Turkish Texts); and Lucene
includes an example stopword list.

Factory class: sol r. Tur ki shLower CaseFi | t er Fact ory
Arguments: None

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="sol r.ApostropheFilterFactory"/>

<filter class="solr. TurkishLower CaseFilterFactory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Turkish"/>
</ anal yzer >

Another example, illustrating diacritics-insensitive search:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ApostropheFilterFactory"/>
<filter class="solr. TurkishLower CaseFilterFactory"/>
<filter class="solr.ASCl | Fol di ngFi | terFactory" preserveOiginal ="true"/>
<filter class="sol r.KeywordRepeatFilterFactory"/>
<filter class="solr.TruncateTokenFilterFactory" prefixLength="5"/>
<filter class="sol r. RenoveDuplicatesTokenFilterFactory"/>
</ anal yzer >

Related Topics

® |LanguageAnalysis

Phonetic Matching

Phonetic matching algorithms may be used to encode tokens so that two different spellings that are pronounced
similarly will match.

For overviews of and comparisons between algorithms, see http://en.wikipedia.org/wiki/Phonetic_algorithm and h
ttp://ntz-develop.blogspot.com/2011/03/phonetic-algorithms.html
Algorithms discussed in this section:
® Beider-Morse Phonetic Matching (BMPM)
Daitch-Mokotoff Soundex
Double Metaphone
Metaphone
Soundex
Refined Soundex
Caverphone
Kdlner Phonetik a.k.a. Cologne Phonetic
NYSIIS

Apache Solr Reference Guide 5.5 170

http://www.ipcsit.com/vol57/015-ICNI2012-M021.pdf
http://www.ipcsit.com/vol57/015-ICNI2012-M021.pdf
http://www.users.muohio.edu/canf/papers/JASIST2008offPrint.pdf
http://wiki.apache.org/solr/LanguageAnalysis
http://en.wikipedia.org/wiki/Phonetic_algorithm
http://ntz-develop.blogspot.com/2011/03/phonetic-algorithms.html
http://ntz-develop.blogspot.com/2011/03/phonetic-algorithms.html

Beider-Morse Phonetic Matching (BMPM)

To use this encoding in your analyzer, see Beider Morse Filter in the Filter Descriptions section.

Beider-Morse Phonetic Matching (BMPM) is a "soundalike" tool that lets you search using a new phonetic
matching system. BMPM helps you search for personal names (or just surnames) in a Solr/Lucene index, and is
far superior to the existing phonetic codecs, such as regular soundex, metaphone, caverphone, etc.

In general, phonetic matching lets you search a name list for names that are phonetically equivalent to the
desired name. BMPM is similar to a soundex search in that an exact spelling is not required. Unlike soundex, it
does not generate a large quantity of false hits.

From the spelling of the name, BMPM attempts to determine the language. It then applies phonetic rules for that
particular language to transliterate the name into a phonetic alphabet. If it is not possible to determine the
language with a fair degree of certainty, it uses generic phonetic instead. Finally, it applies language-independent
rules regarding such things as voiced and unvoiced consonants and vowels to further insure the reliability of the
matches.

For example, assume that the matches found when searching for Stephen in a database are "Stefan", "Steph",
"Stephen"”, "Steve", "Steven", "Stove", and "Stuffin". "Stefan", "Stephen", and "Steven" are probably relevant, and
are names that you want to see. "Stuffin", however, is probably not relevant. Also rejected were "Steph", "Steve",
and "Stove". Of those, "Stove" is probably not one that we would have wanted. But "Steph" and "Steve" are

possibly ones that you might be interested in.

For Solr, BMPM searching is available for the following languages:
English

French

German

Greek

Hebrew written in Hebrew letters
Hungarian

Italian

Polish

Romanian

Russian written in Cyrillic letters

Russian transliterated into English letters
Spanish

Turkish

The name matching is also applicable to non-Jewish surnames from the countries in which those languages are
spoken.

For more information, see here: http://stevemorse.org/phoneticinfo.htm and http://stevemorse.org/phonetics/bmp
m.htm.

Daitch-Mokotoff Soundex

To use this encoding in your analyzer, see Daitch-Mokotoff Soundex Filter in the Filter Descriptions section.

The Daitch-Mokotoff Soundex algorithm is a refinement of the Russel and American Soundex algorithms,
yielding greater accuracy in matching especially Slavic and Yiddish surnames with similar pronunciation but
differences in spelling.

The main differences compared to the other soundex variants are:

® coded names are 6 digits long
® initial character of the name is coded
® rules to encoded multi-character n-grams

Apache Solr Reference Guide 5.5 171

https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-Beider-MorseFilter
http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phonetics/bmpm.htm
http://stevemorse.org/phonetics/bmpm.htm
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-Daitch-MokotoffSoundexFilter

® multiple possible encodings for the same name (branching)

Note: the implementation used by Solr (commons-codec's Dai t chMokot of f Soundex) has additional
branching rules compared to the original description of the algorithm.

For more information, see http://en.wikipedia.org/wiki/Daitch%E2%80%93Mokotoff Soundex and http://www.avo
taynu.com/soundex.htm

Double Metaphone

To use this encoding in your analyzer, see Double Metaphone Filter in the Filter Descriptions section.
Alternatively, you may specify encodi ng="Doubl eMet aphone" with the Phonetic Filter, but note that the
Phonetic Filter version will not provide the second ("alternate") encoding that is generated by the Double
Metaphone Filter for some tokens.

Encodes tokens using the double metaphone algorithm by Lawrence Philips. See the original article at http://w
ww.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2

Metaphone

To use this encoding in your analyzer, specify encodi ng="Met aphone" with the Phonetic Filter.

Encodes tokens using the Metaphone algorithm by Lawrence Philips, described in "Hanging on the Metaphone"
in Computer Language, Dec. 1990.

See http://en.wikipedia.org/wiki/Metaphone

Soundex

To use this encoding in your analyzer, specify encodi ng=" Soundex" with the Phonetic Filter.

Encodes tokens using the Soundex algorithm, which is used to relate similar names, but can also be used as
a general purpose scheme to find words with similar phonemes.

See http://en.wikipedia.org/wiki/Soundex

Refined Soundex

To use this encoding in your analyzer, specify encodi ng=" Ref i nedSoundex" with the Phonetic Filter.
Encodes tokens using an improved version of the Soundex algorithm.

See http://en.wikipedia.org/wiki/Soundex

Caverphone

To use this encoding in your analyzer, specify encodi ng=" Caver phone" with the Phonetic Filter.

Caverphone is an algorithm created by the Caversham Project at the University of Otago. The algorithm is
optimised for accents present in the southern part of the city of Dunedin, New Zealand.

See http://en.wikipedia.org/wiki/Caverphone and the Caverphone 2.0 specification at http://caversham.otago.ac.
nz/files/working/ctp150804.pdf

Apache Solr Reference Guide 5.5 172

http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/DaitchMokotoffSoundex.html
http://en.wikipedia.org/wiki/Daitch%E2%80%93Mokotoff_Soundex
http://www.avotaynu.com/soundex.htm
http://www.avotaynu.com/soundex.htm
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-DoubleMetaphoneFilter
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/Metaphone
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
http://en.wikipedia.org/wiki/Soundex
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/Soundex
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/Caverphone
http://caversham.otago.ac.nz/files/working/ctp150804.pdf
http://caversham.otago.ac.nz/files/working/ctp150804.pdf

Kolner Phonetik a.k.a. Cologne Phonetic

To use this encoding in your analyzer, specify encodi ng=" Col ognePhonet i ¢c" with the Phonetic Filter.

The Kdlner Phonetik, an algorithm published by Hans Joachim Postel in 1969, is optimized for the German
language.

See http://de.wikipedia.org/wiki/K%C3%B6Ilner_Phonetik

NYSIIS

To use this encoding in your analyzer, specify encodi ng="Nysi i s" with the Phonetic Filter.

NYSIIS is an encoding used to relate similar names, but can also be used as a general purpose scheme to find
words with similar phonemes.

See http://en.wikipedia.org/wiki/NYSIIS and http://www.dropby.com/NYSIIS.html

Running Your Analyzer

Once you've defined a field type in scherma. xnm and specified the analysis steps that you want applied to it, you
should test it out to make sure that it behaves the way you expect it to. Luckily, there is a very handy page in the
Solr admin interface that lets you do just that. You can invoke the analyzer for any text field, provide sample
input, and display the resulting token stream.

For example, let's look at some of the "Text" field types available in the "bi n/ sol r -e techproducts”
example configuration, and use the Analysis Screen (http://localhost:8983/solr/#/techproducts/analysis) to
compare how the tokens produced at index time for the sentence "Runni ng an Anal yzer " match up with a
slightly different query text of "run my anal yzers"

We can begin with "t ext _ws" - one of the most simplified Text field types available:

‘.”‘,4 Field Value (Index) Field Value (Query)

SO Lr = Running an Analyzer run my analyzer

& Dashboard

; = =
(&2 Logging Analyse Fieldname / FieldType: et @

EF Core Admin

r Java Properties Running an Analyzer run my analyzer

[52 756e6e69 6e67] | [616e]l | [41 6e616c 79 7a6572] [72756€]l | [6d79] | [616e6l 6c 79 7a65 721
0 8 11 0 4 7

7 10 19 3 [15
techproducts - 1 1 1 1 1 1

= Thread Dump

AR word word word word word word

il
= 1 2 3 1 2 3
T Analysis

= 0 |

By looking at the start and end positions for each term, we can see that the only thing this field type does is
tokenize text on whitespace. Notice in this image that the term "Running” has a start position of 0 and an end
position of 7, while "an" has a start position of 8 and an end position of 10, and "Analyzer" starts at 11 and ends
at 19. If the whitespace between the terms was also included, the count would be 21; since it is 19, we know that
whitespace has been removed from this query.

Note also that the indexed terms and the query terms are still very different. "Running" doesn't match "run”,
"Analyzer" doesn't match "analyzer" (to a computer), and obviously "an" and "my" are totally different words. If

Apache Solr Reference Guide 5.5 173

https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://de.wikipedia.org/wiki/K%C3%B6lner_Phonetik
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/NYSIIS
http://www.dropby.com/NYSIIS.html
http://localhost:8983/solr/#/techproducts/analysis

our objective is to allow queries like "run ny anal yzer " to match indexed text like "Runni ng an

Anal yzer " then we will evidently need to pick a different field type with index & query time text analysis that

does more processing of the inputs.
In particular we will want:

® (Case insensitivity, so "Analyzer" and "analyzer" match.
® Stemming, so words like "Run" and "Running” are considered equivalent terms.
® Stop Word Pruning, so small words like "an" and "my" don't affect the query.

For our next attempt, let's try the "t ext _gener al " field type:

(’,‘,4 Field Value (Index) Field Value (Query)
Solr = Running an Analyzer run my analyzer
& Dashboard
(22 Logging Analyse Fieldname / Field Type: Lenckin ap e NG *
EE Core Admin
* Java Properties Running an Analyzer run
[52 7562669 6e67] | [616¢] [41 6261 6C 79 7265 72] [72 75 6e]
= Thread Dump 0 8 1 o
7 10 19 3
techproducts - 1 1 1 1
s <ALPHANUM= <ALPHANUM=> | <ALPHANUM= <ALPHANUM:=
- 1 2 3 1
T Analysis
Running an Analyzer run
= [52 75 62669 6e67] | [616el [41 6261 6c 79 7a6572] [7275 6el
¥ 0 a 11 0
™ 7 10 19 3
= 1 1 1 1
<ALPHANUM> <ALPHANUM=> | <ALPHANUM=> <ALPHANUM:=
& 1 2 3 1
- running an analyzer run
[7275 62669 6e67] | [616el [61 661 6C 79 7a65 721 [7275 6el
@ 0 1 11 0
7 10 19 3
1 1 1 1
<ALPHANUM=> <ALPHANUM> | <ALPHANUM=> <ALPHANUM=

my
[6d 79]

4

6

1
<ALPHANUM>
2

my

[6d 791

a4

6

1
<ALPHANUM=>
2

my

[6d 791

a4

6

1
<ALPHANUM=>

¥ Analyse Values

analyzer

[61 6261 6c 79 7265 72]
7

15

1

<ALPHANUM>

3

analyzer

[61 6e 61 6c 79 7a 65 721
7

15

1

<ALPHANUM>

3

analyzer

[61 6e 61 6c 79 7a 65 721
7

15

1

<ALPHANUM=>

With the verbose output enabled, we can see how each stage of our new analyzers modify the tokens they
receive before passing them on to the next stage. As we scroll down to the final output, we can see that we do
start to get a match on "analyzer" from each input string, thanks to the "LCF" stage -- which if you hover over

with your mouse, you'll see is the "Lower CaseFi |l ter™

7 10 19 3
J@ 1 1 1 1
SOU’ = <ALPHANUM=> <ALPHANUM> | <ALPHANUM> <ALPHANUM=
1 2 3 1
& Dashboard Running an Analyzer run
§ . [52 75 6e6e 69 6e67] | [616el [41 6e 61 6c 79 7a 65 721 [72 75 6el
(= Logging 0 3 11 0
= Core Admin 7 10 19 3
7 Java Properties ! L 1 L
<ALPHANUM> <ALPHANUM=> | <ALPHANUM=> <ALPHANUM=
= Thread Dump 1 > 3 1
T . running an analyzer run
[7275 606269 6e67] | [616€] [61 6e61 6c 79 7a 65 72] [72 75 6e]
0 8 11 0
T Analysis 7 10 19 3
1 1 1 1
= <ALPHANUM> <ALPHANUM=> | <ALPHANUM:=> <ALPHANUM=
L 1 2 3 1
= run
= [72 75 6el
i‘ 0
3
& 1
<ALPHANUM=>
5] 1

6
1
<ALPHANUM=>
2

my
16d 79]

4

6

1
<ALPHANUM=>
2

my
16 79]

a

6

1
<ALPHANUM=
2

my
[6d 791

a

6

1
<ALPHANUM>
2

15

1
<ALPHANUM=>
3

analyzer

[61 6e 61 6c 79 7a 65 721
7

15

1

<ALPHANUM>

3

analyzer

[61 6e 61 6c 79 7a65 72]
7

15

1

<ALPHANUM>

3

analyzer

[61 6e 61 6C 79 7a65 721
7

15

1

<ALPHANUM=>

3

Apache Solr Reference Guide 5.5

174

The "t ext _gener al " field type is designed to be generally useful for any language, and it has definitely gotten
us closer to our objective than "t ext _ws" from our first example by solving the problem of case sensitivity. It's
still not quite what we are looking for because we don't see stemming or stopword rules being applied.

So now let us try the "t ext _en" field type:

Field Value (Index)
Running an Analyzer

d@

Solr

@ Dashboard
(& Logging
E£ Core Admin
i Java Properties

= Thread Dump

techpreducts -
Pt
it i

T Analysis

B E DG

&

Analyse Fieldname / FieldType:

text_en

Running

[52 75 6e 62 69 62 67]
0

7

1

<ALPHANUM>

1

Running

[52 75 6e 62 69 62 67]
0

7

1

<ALPHANUM>

1

running

[72 75 6e 62 6% 6e 67]
0

7

1

an

[61 6e]

8

10

1
<ALPHANUM>
2

Analyzer

[41 6e 61 6c 79 7265 72]
11

19

1

<ALPHANUM>

3

Analyzer

[41 6261 6c 797265 72]
11

19

1

<ALPHANUM>

3

analyzer

[61 6e61 6c 79 7a 65 72]
11

19

1

Field Value {Query)
run my analyzer

run

[72 75 6l

0

3

1
<ALPHANUM>
1

run

[72 75 6]

0

3

1
<ALPHANUM=>
1

run

[72 75 6l
0

3

1

my
[6d 79]

4

6

1
<ALPHANUM>
2

my

[6d 79]

4

6

1
<ALPHANUM:=>
2

my
[6d 791
4

6

1

T Analyse Values

analyzer

[61 6261 6c 79 7a65 72]
7

15

1

<ALPHANUM>

3

analyzer

[61 6e 61 6c 79 7a 65 72]
7

15

1

<ALPHANUM>

3

analyzer

[61 6 61 6c 79 7a65 72]
7

15

1

Now we can see the "SF" (St opFi | t er) stage of the analyzers solving the problem of removing Stop Words
("an" and "my"), and as we scroll down, we also see the "PSF" (Port er St enFi | t er) stage apply stemming
rules suitable for our English language input, such that the terms produced by our "index analyzer" and the terms
produced by our "query analyzer" match the way we expect.

"

Solr~

& Dashboard
() Logging
Z Core Admin
= Java Properties

= Thread Dump

techproducts -
s
i

T Analysis

. Ry

B .

<ALPHANUM=>
1

running

[72 75 6e 62 69 6267]
false

]

7

1

<ALPHANUM>

1

run

[72 75 6]

0

7

1
<ALPHANUM=>
false

1

<ALPHANUM=
3

analyzer

[61 6e 61 6c 79 7265 72]
false

1

19

1

<ALPHANUM=>

3

analyz

[61 6e 61 6c 79 7a]
1

19

1

<ALPHANUM=>
false

3

<ALPHANUM=
1

run

[72 75 6e]

0

3

1
<ALPHANUM:=>
1

run

[72 75 6el
false

0

3

1
<ALPHANUM=
1

run

[72 75 6el

0

3

1
<ALPHANUM=>
false

1

<ALPHANUM=>
2

my
[6d 79]

4

6

1
<ALPHANUM>
2

my

[6d 79]

false

4

6

1
<ALPHANUM=
2

my

[6d 79]

4

6

1
<ALPHANUM=>
false

2

<ALPHANUM=>
3

analyzer

[61 6e 61 6c 79 Ta 65 72]
7

15

1

<ALPHANUM>

3

analyzer

[61 6e 61 6c 79 7a 65 72]
false

7

15

1

<ALPHANUM=>

3

analyz

[61 6e 61 6c 79 7a]
7

15

1

<ALPHANUM>
false

3

At this point, we can continue to experiment with additional inputs, verifying that our analyzers produce matching
tokens when we expect them to match, and disparate tokens when we do not expect them to match, as we

Apache Solr Reference Guide 5.5

175

iterate and tweak our field type configuration.

Apache Solr Reference Guide 5.5 176

Indexing and Basic Data Operations

This section describes how Solr adds data to its index. It covers the following topics:
® Introduction to Solr Indexing: An overview of Solr's indexing process.

® Post Tool: Information about using post . j ar to quickly upload some content to your system.

® Uploading Data with Index Handlers: Information about using Solr's Index Handlers to upload
XML/XSLT, JSON and CSV data.

® Uploading Data with Solr Cell using Apache Tika: Information about using the Solr Cell framework to
upload data for indexing.

® Uploading Structured Data Store Data with the Data Import Handler: Information about uploading and
indexing data from a structured data store.

® Updating Parts of Documents: Information about how to use atomic updates and optimistic concurrency
with Solr.

® Detecting Languages During Indexing: Information about using language identification during the
indexing process.

® De-Duplication: Information about configuring Solr to mark duplicate documents as they are indexed.
® Content Streams: Information about streaming content to Solr Request Handlers.

® UIMA Integration: Information about integrating Solr with Apache's Unstructured Information
Management Architecture (UIMA). UIMA lets you define custom pipelines of Analysis Engines that
incrementally add metadata to your documents as annotations.

Indexing Using Client APIs

Using client APIs, such as SolrJ, from your applications is an important option for updating Solr indexes. See the
Client APIs section for more information.

Introduction to Solr Indexing

This section describes the process of indexing: adding content to a Solr index and, if necessary, modifying that
content or deleting it. By adding content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated value (CSV)
files, data extracted from tables in a database, and files in common file formats such as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

® Using the Solr Cell framework built on Apache Tika for ingesting binary files or structured files such as
Office, Word, PDF, and other proprietary formats.

® Uploading XML files by sending HTTP requests to the Solr server from any environment where such
requests can be generated.

® Writing a custom Java application to ingest data through Solr's Java Client API (which is described in
more detail in Client APIs. Using the Java API may be the best choice if you're working with an
application, such as a Content Management System (CMS), that offers a Java API.

Regardless of the method used to ingest data, there is a common basic data structure for data being fed into a
Solr index: a document containing multiple fields, each with a name and containing content, which may be
empty. One of the fields is usually designated as a unique ID field (analogous to a primary key in a database),
although the use of a unique ID field is not strictly required by Solr.

Apache Solr Reference Guide 5.5 177

If the field name is defined in the schenma. xni file that is associated with the index, then the analysis steps
associated with that field will be applied to its content when the content is tokenized. Fields that are not explicitly
defined in the schema will either be ignored or mapped to a dynamic field definition (see Documents, Fields, and
Schema Design), if one matching the field name exists.

For more information on indexing in Solr, see the Solr Wiki.

The Solr Example Directory

When starting Solr with the "-e" option, the exanpl e/ directory will be used as base directory for the example
Solr instances that are created. This directory also includes an exanpl e/ exanpl edocs/ subdirectory
containing sample documents in a variety of formats that you can use to experiment with indexing into the
various examples.

The cur | Utility for Transferring Files

Many of the instructions and examples in this section make use of the cur | utility for transferring content
through a URL. cur | posts and retrieves data over HTTP, FTP, and many other protocols. Most Linux
distributions include a copy of cur | . You'll find curl downloads for Linux, Windows, and many other operating
systems at http://curl.haxx.se/download.html. Documentation for cur | is available here: http://curl.haxx.se/docs/
manpage.html.

1. Using cur | or other command line tools for posting data is just fine for examples or tests, but it's not the
recommended method for achieving the best performance for updates in production environments. You
will achieve better performance with Solr Cell or the other methods described in this section.

Instead of cur | , you can use utilities such as GNU wget (http://www.gnu.org/software/wget/) or manage
GETs and POSTS with Perl, although the command line options will differ.

Post Tool

Solr includes a simple command line tool for POSTing various types of content to a Solr server. The tool is bi n/
post . The bin/post tool is a Unix shell script; for Windows (non-Cygwin) usage, see the Windows section below.

To run it, open a window and enter:

bi n/post -c gettingstarted exanple/filnms/filns.json

This will contact the server at | ocal host : 8983. Specifying the col | ecti on/ core nane is mandatory. The
"-help’ (or simply '-h") option will output information on its usage (i.e., bi n/ post - hel p).

Using the bin/post Tool

Specifying either the col | ecti on/ cor e nane or the full update ur | is mandatory when using bi n/ post .

The basic usage of bi n/ post is:

Apache Solr Reference Guide 5.5 178

https://wiki.apache.org/solr/FrontPage
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://www.gnu.org/software/wget/

$ bin/post -h
Usage: post -c <collection> [OPTIONS] <files|directoriesfurls|-d ["...",...]>
or post -help

collection nane defaults to DEFAULT _SOLR COLLECTION if not specified

Sol r options:
-url <base Solr update URL> (overrides collection, host, and port)
-host <host> (default: | ocal host)
-p or -port <port> (default: 8983)
-commt yes|no (default: yes)

Web crawl options:

-recursive <depth> (default: 1)
-del ay <seconds> (default: 10)

Directory crawl options:
-del ay <seconds> (default: 0)

stdin/args options:
-type <content/type> (default: application/xm)

O her options:
-filetypes <type>[,<type> ...] (default:
xm , j son, csv, pdf, doc, docx, ppt, ppt x, xI s, x| sx, odt, odp, ods, ott,otp,ots, rtf, htmhtn,txt

ele))
- parans "<key>=<val ue>[&key>=<val ue>...]" (val ues nust be URL-encoded; these

pass through to Solr update request)
-out yes|no (default: no; yes outputs Solr response to consol e)

Examples

There are several ways to use bi n/ post . This section presents several examples.

Indexing XML

Add all documents with file extension . xim to collection or core named get ti ngst art ed.
bi n/ post -c gettingstarted *.xml

Add all documents with file extension . xnml to the getti ngst art ed collection/core on Solr running on port 898
4,

bi n/ post -c gettingstarted -p 8984 *.xnl

Send XML arguments to delete a document from get ti ngst art ed.

Apache Solr Reference Guide 5.5 179

bi n/post -c gettingstarted -d ' <del et e><i d>42</i d></del et e>'

Indexing CSV

Index all CSV files into get ti ngst art ed:
bi n/ post -c gettingstarted *.csv
Index a tab-separated file into get t i ngst art ed:
bi n/ post -c signals -parans "separator=%9" -type text/csv data.tsv

The content type (- t ype) parameter is required to treat the file as the proper type, otherwise it will be ignored
and a WARNING logged as it does not know what type of content a .tsv file is. The CSV handler supports the se
par at or parameter, and is passed through using the - par ans setting.

Indexing JSON
Index all JSON files into get ti ngst art ed.

bi n/post -c gettingstarted *.json

Indexing rich documents (PDF, Word, HTML, etc)

Index a PDF file into get t i ngst art ed.
bi n/ post -c gettingstarted a. pdf

Automatically detect content types in a folder, and recursively scan it for documents for indexing into get t i ngst
art ed.

bi n/ post -c gettingstarted afol der/

Automatically detect content types in a folder, but limit it to PPT and HTML files and index into getti ngstarte
d.

bi n/ post -c gettingstarted -filetypes ppt, html afol der/

Windows support

bi n/ post exists currently only as a Unix shell script, however it delegates its work to a cross-platform capable
Java program. The Si npl ePost Tool can be run directly in supported environments, including Windows.

SimplePostTool

Apache Solr Reference Guide 5.5 180

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handlers#UploadingDatawithIndexHandlers-CSVFormattedIndexUpdates

The bi n/ post script currently delegates to a standalone Java program called Si npl ePost Tool . This tool,
bundled into a executable JAR, can be run directly using j ava -j ar exanpl e/ exanpl edocs/ post.j ar.
See the help output and take it from there to post files, recurse a website or file system folder, or send direct
commands to a Solr server.

$ java -jar exanpl e/ exanpl edocs/ post.jar -h

Si npl ePost Tool version 5.0.0

Usage: java [SystenProperties] -jar post.jar [-h|-] [<file|folder|url]|arg>
[<filelfolder|url]arg>...]]

Uploading Data with Index Handlers

Index Handlers are Request Handlers designed to add, delete and update documents to the index. In addition to
having plugins for importing rich documents using Tika or from structured data sources using the Data Import
Handler, Solr natively supports indexing structured documents in XML, CSV and JSON.

The recommended way to configure and use request handlers is with path based names that map to paths in the
request url. However, request handlers can also be specified with the gt (query type) parameter if the r equest
Di spat cher is appropriately configured. It is possible to access the same handler using more than one name,
which can be useful if you wish to specify different sets of default options.

A single unified update request handler supports XML, CSV, JSON, and javabin update requests, delegating to
the appropriate Cont ent St r eanlLoader based on the Cont ent - Type of the ContentStream.
Topics covered in this section:
® UpdateRequestHandler Configuration
® XML Formatted Index Updates
® Adding Documents
¢ XML Update Commands
® Using curl to Perform Updates
® Using XSLT to Transform XML Index Updates
® JSON Formatted Index Updates
® Solr-Style JISON
® JSON Update Convenience Paths
® Transforming and Indexing Custom JSON
® CSV Formatted Index Updates
® CSV Update Parameters
® |ndexing Tab-Delimited files
® CSV Update Convenience Paths
® Nested Child Documents

UpdateRequestHandler Configuration

The default configuration file has the update request handler configured by default.

<request Handl er nanme="/update" cl ass="sol r. Updat eRequest Handl er" />

Apache Solr Reference Guide 5.5 181

XML Formatted Index Updates

Index update commands can be sent as XML message to the update handler using Cont ent -t ype:
application/xm orContent-type: text/xm.

Adding Documents

The XML schema recognized by the update handler for adding documents is very straightforward:

® The <add> element introduces one more documents to be added.
® The <doc> element introduces the fields making up a document.
® The <fi el d> element presents the content for a specific field.

For example:

<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</fiel d>
<field nanme="dd">796. 35</fi el d>
<field name="nunpages">128</fi el d>
<field nanme="desc"></fiel d>
<field nane="price">12. 40</fi el d>
<field nane="title" boost="2.0">Summer of the all-rounder: Test and chanpi onship
cricket in England 1982</fiel d>
<field nane="i sbn">0002166313</fi el d>
<field nane="year pub">1982</fi el d>
<field name="publisher">Col | i ns</fiel d>
</ doc>
<doc boost="2.5">
</ doc>
</ add>

Each element has certain optional attributes which may be specified.

Command Optional Parameter Description
Parameter
<add> commitWithin= Add the document within the specified number of milliseconds
number
<add> overwrite=bool Default is true. Indicates if the unique key constraints should be checked to
ean overwrite previous versions of the same document (see below)
<doc> boost=float Default is 1.0. Sets a boost value for the document.To learn more about

boosting, see Searching.

<field> boost=float Default is 1.0. Sets a boost value for the field.

If the document schema defines a unique key, then by default an / updat e operation to add a document will

overwrite (ie: replace) any document in the index with the same unique key. If no unique key has been defined,

indexing performance is somewhat faster, as no check has to be made for an existing documents to replace.

If you have a unique key field, but you feel confident that you can safely bypass the uniqueness check (eg: you

build your indexes in batch, and your indexing code guarantees it never adds the same document more then
once) you can specify the overw it e="f al se" option when adding your documents.

Apache Solr Reference Guide 5.5

182

XML Update Commands

Commit and Optimize Operations

The <conmi t > operation writes all documents loaded since the last commit to one or more segment files on the
disk. Before a commit has been issued, newly indexed content is not visible to searches. The commit operation
opens a new searcher, and triggers any event listeners that have been configured.

Commits may be issued explicitly with a <commi t / > message, and can also be triggered from <aut oconmi t >
parameters in sol rconfi g. xm .

The <opt i ni ze> operation requests Solr to merge internal data structures in order to improve search
performance. For a large index, optimization will take some time to complete, but by merging many small
segment files into a larger one, search performance will improve. If you are using Solr's replication mechanism to
distribute searches across many systems, be aware that after an optimize, a complete index will need to be
transferred. In contrast, post-commit transfers are usually much smaller.

The <conmi t > and <opt i ni ze> elements accept these optional attributes:

Optional Description
Attribute
waitSearcher Default is true. Blocks until a new searcher is opened and registered as the main query

searcher, making the changes visible.

expungeDeletes (commit only) Default is false. Merges segments that have more than 10% deleted docs,
expunging them in the process.

maxSegments (optimize only) Default is 1. Merges the segments down to no more than this number of
segments.

Here are examples of <commit> and <optimize> using optional attributes:

<conmit wait Searcher="fal se"/>
<commt wait Searcher="fal se" expungeDel etes="true"/>
<optim ze wait Searcher="fal se"/>

Delete Operations

Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with the specified
ID, and can be used only if a UniquelD field has been defined in the schema. "Delete by Query" deletes all
documents matching a specified query, although commi t W t hi n is ignored for a Delete by Query. A single
delete message can contain multiple delete operations.

<del et e>
<i d>0002166313</i d>
<i d>0031745983</i d>
<quer y>subj ect : sport </ query>
<quer y>publ i sher: pengui n</ query>
</ del et e>

When using the Join query parser, you should use the scor e parameter with a value of none to avoid a Cl assC
ast Except i on. See the section on the Join Query Parser for more details on the scor e parameter.

Rollback Operations

Apache Solr Reference Guide 5.5 183

The rollback command rolls back all add and deletes made to the index since the last commit. It neither calls any
event listeners nor creates a new searcher. Its syntax is simple: <r ol | back/ >.

Using cur | to Perform Updates

You can use the cur | utility to perform any of the above commands, using its - - dat a- bi nary option to
append the XML message to the cur|l command, and generating a HTTP POST request. For example:

curl http://1ocal host:8983/solr/my_collection/update -H "Content-Type: text/xm"
--data-binary '
<add>
<doc>
<field nanme="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</fiel d>
<field nane="dd">796. 35</fi el d>
<field nanme="isbn">0002166313</fi el d>
<field nane="year pub">1982</fi el d>
<field nane="publisher">Col | i ns</field>
</ doc>
</ add>'

For posting XML messages contained in a file, you can use the alternative form:

curl http://1ocal host:8983/solr/my_collection/update -H "Content-Type: text/xm"
--data-binary @vyfile.xmn

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the following.
Note the escaping of "<" and ">":

curl http://1ocal host:8983/solr/ny_coll ection/update?stream body=%3Cconmm t/ %3E

Responses from Solr take the form shown here:

<response>
<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qrli ne">127</i nt >
</l|st>
</response>

The status field will be non-zero in case of failure.

Using XSLT to Transform XML Index Updates

The UpdateRequestHandler allows you to index any arbitrary XML using the <t r > parameter to apply an XSL
transformation. You must have an XSLT stylesheet in the conf / xsl t directory of your config set that can
transform the incoming data to the expected <add><doc/ ></ add> format, and use the t r parameter to specify
the name of that stylesheet.

Here is an example XSLT stylesheet:

Apache Solr Reference Guide 5.5 184

https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/XSLT

<xsl:styl esheet version='"1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m >
<xsl : out put nedi a-type="text/xm " nethod="xm" indent="yes"/>
<xsl:tenplate match="/"'>

<add>
<xsl : appl y-tenpl ates sel ect="response/result/doc"/>
</ add>
</ xsl:tenpl at e>
<l-- Ignore score (nmakes no sense to index) -->

<xsl:tenpl ate match="doc/*[@ane="score']" priority="100"></xsl:tenpl ate>
<xsl :tenpl ate mat ch="doc">
<xsl :vari abl e nane="pos" sel ect="position()"/>
<doc>
<xsl : appl y-t enpl at es>
<xsl :wi t h- param nane="pos" ><xsl : val ue- of sel ect ="$pos"/></xsl :wi t h- paranr
</ xsl : appl y-tenpl at es>
</ doc>
</ xsl:tenpl at e>
<I-- Flatten arrays to duplicate field lines -->
<xsl:tenplate match="doc/arr" priority="100">
<xsl :variabl e nane="fn" sel ect="@ane"/>
<xsl:for-each select="*">
<xsl : el erent nanme="fiel d">
<xsl:attribute nane="nane" ><xsl : val ue-of sel ect="%$fn"/></xsl:attribute>
<xsl : val ue- of select="."/>
</ xsl : el ement >
</ xsl: for-each>
</ xsl:tenpl ate>
<xsl:tenpl ate mat ch="doc/*">
<xsl:variabl e nane="fn" sel ect="@ane"/>
<xsl : el erent nanme="fiel d">
<xsl:attribute nane="nane" ><xsl : val ue-of sel ect="%$fn"/></xsl:attribute>
<xsl : val ue- of select="."/>
</ xsl : el ement >
</ xsl:tenpl at e>
<xsl:tenplate match="*"/>
</ xsl : styl esheet >

This stylesheet transforms Solr's XML search result format into Solr's Update XML syntax. One example usage
would be to copy a Solr 1.3 index (which does not have CSV response writer) into a format which can be indexed
into another Solr file (provided that all fields are stored):

http://1ocal host: 8983/ solr/ my_col |l ection/sel ect ?2q=*:*&at =xsl t & r =updat eXml . xsl & ows=
1000

You can also use the stylesheet in Xsl| t Updat eRequest Handl er to transform an index when updating:

curl "http://local host:8983/solr/my_coll ection/update?conm t=true& r=updateXm . xsl"
-H "Content-Type: text/xm" --data-binary @ryexporteddata. xni

For more information about the XML Update Request Handler, see https://wiki.apache.org/solr/UpdateXmIMessa
ges.

JSON Formatted Index Updates

Apache Solr Reference Guide 5.5 185

https://wiki.apache.org/solr/UpdateXmlMessages
https://wiki.apache.org/solr/UpdateXmlMessages

Solr can accept JSON that conforms to a defined structure, or can accept arbitrary JSON-formatted documents.
If sending arbitrarily formatted JSON, there are some additional parameters that need to be sent with the update
request, described below in the section Transforming and Indexing Custom JSON.

Solr-Style JSON

JSON formatted update requests may be sent to Solr's / updat e handler using Cont ent - Type:
application/jsonorContent-Type: text/json.

JSON formatted updates can take 3 basic forms, described in depth below:

® A single document to add, expressed as a top level JSON Object. To differentiate this from a set of
commands, the j son. command=f al se request parameter is required.

® Alist of documents to add, expressed as a top level JSON Array containing a JSON Object per document.

® A sequence of update commands, expressed as a top level JSON Object (aka: Map).

Adding a Single JSON Document

The simplest way to add Documents via JSON is to send each document individually as a JSON Object, using
the / updat e/ j son/ docs path:

curl -X POST -H ' Content-Type: application/json'
"http://1ocal host:8983/solr/mnmy_coll ection/update/json/docs' --data-binary '
{

"idUo o1t

"title": "Doc 1"

Adding Multiple JSON Documents

Adding multiple documents at one time via JSON can be done via a JSON Array of JSON Objects, where each
object represents a document:

curl -X POST -H ' Content-Type: application/json'
"http://1ocal host:8983/solr/my_col |l ection/update' --data-binary '
[

{
"idto "1,
"title": "Doc 1"
H
{
"idho "2,
"title": "Doc 2"
}

A sample JSON file is provided at exanpl e/ exanpl edocs/ books. j son and contains an array of objects that
you can add to the Solr t echpr oduct s example:

curl "http://local host: 8983/ sol r/techproducts/update?comit=true' --data-binary
@xanpl e/ exanpl edocs/ books. json -H ' Content-type: application/json'

Sending JSON Update Commands

Apache Solr Reference Guide 5.5 186

In general, the JSON update syntax supports all of the update commands that the XML update handler supports,
through a straightforward mapping. Multiple commands, adding and deleting documents, may be contained in
one message:

curl -X POST -H ' Content-Type: application/json'
"http://1ocal host:8983/solr/nmy_col |l ection/update' --data-binary

{
"add": {
"doc": {
"id": "DOocC1"
"my_boosted_field": { /* use a map with boost/value for a boosted field
*/
"boost": 2.3,
"val ue": "test"
H
"my_multivalued field": ["aaa", "bbb"] /* Can use an array for a
mul ti-valued field */
}
H
"add": {
"commi t Wthin": 5000, /* commit this document within 5 seconds */
"overwite": false, /* don't check for existing docunents with the
same uni queKey */
"boost": 3.45, /* a docunent boost */
"doc": {
“fit: "viv, /* Can use repeated keys for a multi-valued field
*/
"fav: "v2"
}
}
"commt": {},
"optimze": { "waitSearcher":false },
"delete": { "id":"ID" }, /[* delete by ID */
"delete": { "query":"QUERY" } /* del ete by query */
}

1. Comments are not allowed in JSON, but duplicate names are.

The comments in the above example are for illustrative purposes only, and can not be included in actual
commands sent to Solr.

As with other update handlers, parameters such as conmi t, commi t Wt hi n, opti m ze, and over wi t e may
be specified in the URL instead of in the body of the message.

The JSON update format allows for a simple delete-by-id. The value of a del et e can be an array which contains
a list of zero or more specific document id's (not a range) to be deleted. For example, a single document:

{ "delete":"nyid" }
Or a list of document IDs:

{ "delete":["id1l","id2"] }

Apache Solr Reference Guide 5.5 187

The value of a "delete” can be an array which contains a list of zero or more id's to be deleted. It is not a range
(start and end).

You can also specify _ver si on_ with each "delete":

{
"del ete":"id": 50,
"_version_":12345

You can specify the version of deletes in the body of the update request as well.

JSON Update Convenience Paths

In addition to the / updat e handler, there are a few additional JISON specific request handler paths available by
default in Solr, that implicitly override the behavior of some request parameters:

Path Default Parameters
[updat e/ j son stream cont ent Type=appl i cati on/j son

/updat e/ j son/ docs stream content Type=application/json

j son. command=f al se

The / updat e/ j son path may be useful for clients sending in JSON formatted update commands from
applications where setting the Content-Type proves difficult, while the / updat e/ j son/ docs path can be
particularly convenient for clients that always want to send in documents — either individually or as a list — with
out needing to worry about the full JSON command syntax.

Transforming and Indexing Custom JSON

If you have JSON documents that you would like to index without transforming them into Solr's structure, you can
add them to Solr by including some parameters with the update request. These parameters provide information
on how to split a single JSON file into multiple Solr documents and how to map fields to Solr's schema. One or
more valid JSON documents can be sent to the / updat e/ j son/ docs path with the configuration params.

Mapping Parameters

These parameters allow you to define how a JSON file should be read for multiple Solr documents.

® gplit: Defines the path at which to split the input JSON into multiple Solr documents and is required if you
have multiple documents in a single JSON file. If the entire JSON makes a single solr document, the path
must be “/ "

® f: This is a multivalued mapping parameter. At least one field mapping must be provided. The format of
the parameteris target-fi el d- nane: j son- pat h. The j son- pat h is required. Thetarget-fi el d
- name is the Solr document field name, and is optional. If not specified, it is automatically derived from the
input JSON. Wildcards can be used here, see the section Wildcards below for more information.

* mapUniqueKeyOnly (boolean): This parameter is particularly convenient when the fields in the input
JSON are not available in the schema and schemaless mode is not enabled. This will index all the fields
into the default search field (using the df parameter, below) and only the uni queKey field is mapped to
the corresponding field in the schema. If the input JSON does not have a value for the uni queKey field
then a UUID is generated for the same.

® df: If the mapUni queKeyOnl y flag is used, the update handler needs a field where the data should be
indexed to. This is the same field that other handlers use as a default search field.

® srcField: This is the name of the field to which the JSON source will be stored into. This can only be used

Apache Solr Reference Guide 5.5 188

if split=/ (i.e., you want your JSON input file to be indexed as a single Solr document). Note that atomic
updates will cause the field to be out-of-sync with the document.

® echo: This is for debugging purpose only. Set it to true if you want the docs to be returned as a response.
Nothing will be indexed.

For example, if we have a JSON file that includes two documents, we could define an update request like this:

curl "http://local host:8983/solr/my_collection/update/json/docs'\
' ?split=/exans'\
"&f =first:/first'\
‘& =last:/last'\
' & =gr ade: / grade' \
' & =subj ect : / exans/ subj ect ' \
' &f =t est:/exans/test'\
" & =mar ks: / exanms/ mar ks' \
-H ' Content-type:application/json' -d '

{
"first": "John",
"last": "Doe",
"grade": 8,
"exams": [
{
"subject": "Maths",
"test" "terml",
"mar ks" : 90},
{
"subject": "Biology",
"test" "terml",
"marks" : 86}
]
}

With this request, we have defined that "exams" contains multiple documents. In addition, we have mapped
several fields from the input document to Solr fields.

When the update request is complete, the following two documents will be added to the index:

{
"first":"John",
"l ast":" Doe",
"mar ks": 90,
"test":"terml",
"subj ect": " Mat hs",
"grade": 8

}

{
"first":"John",
"l ast":" Doe",
"mar ks": 86,
"test":"ternml",
"subj ect":"Bi ol ogy",
"grade": 8

}

In the prior example, all of the fields we wanted to use in Solr had the same names as they did in the input
JSON. When that is the case, we can simplify the request as follows:

Apache Solr Reference Guide 5.5 189

curl "http://local host:8983/solr/my_collection/update/json/docs'\
' ?split=/exans'\
"&f=/first'\
"&f =/last'\
' & =/ grade' \
' & =/ exans/ subj ect '\
" &f =/ exans/test'\
' &f =/ exans/ mar ks' \
-H ' Content-type:application/json' -d '

{
"first": "John",
"last": "Doe",
"grade": 8,
"exams": [
{
"subject": "Maths",
"test" ;o "terml",
"marks" : 90},
{
"subject": "Biology",
"test" ;o "terml",
"mar ks" : 86}
]
}

In this example, we simply named the field paths (such as / exans/ t est). Solr will automatically attempt to add
the content of the field from the JSON input to the index in a field with the same name.

(¥) Note that if you are not working in Schemaless Mode, where fields that don't exist will be created on the
fly with Solr's best guess for the field type, documents may get rejected if the fields do not exist in the
schema before indexing.

Wildcards

Instead of specifying all the field names explicitly, it is possible to specify wildcards to map fields automatically.
There are two restrictions: wildcards can only be used at the end of the j son- pat h, and the split path cannot
use wildcards. A single asterisk "*" maps only to direct children, and a double asterisk "**" maps recursively to all
descendants. The following are example wildcard path mappings:

f =/ docs/ *: maps all the fields under docs and in the name as given in json

f =/ docs/ **: maps all the fields under docs and its children in the name as given in json

f =sear chFi el d: / docs/ *: maps all fields under /docs to a single field called ‘searchField’

f =sear chFi el d: / docs/ **: maps all fields under /docs and its children to searchField

f =$FQN: / **: maps all fields to the fully qualified name ($FQN) of the JSON field. The fully qualified
name is obtained by concatenating all the keys in the hierarchy with a period (.) as a delimiter.

(Note: The default value of f is '$FQN: / **' fom Solr 5.0 . Itused to be '/ **' in 4.10.x releases. This breaks
backward compatibility. If you wish to have the old behavior please specify f =/ ** explicitly.)

With wildcards we can further simplify our previous example as follows:

Apache Solr Reference Guide 5.5 190

curl "http://local host:8983/solr/my_collection/update/json/docs'\
' ?split=/exans'\
P&/ *E\

-H 'Content-type: application/json' -d'

{
"first": "John",
"last": "Doe",
"grade": 8,
"exanms": [
{
"subject": "Maths",
"test" o "ternl”,
"mar ks" : 90},
{
"subject": "Biology",
"test" o "ternl”,
"mar ks" : 86}
]
}

Because we want the fields to be indexed with the field names as they are found in the JSON input, the double
wildcard in f =/ ** will map all fields and their descendants to the same fields in Solr.

It is also possible to send all the values to a single field and do a full text search on that. This is a good option to
blindly index and query JSON documents without worrying about fields and schema.

curl "http://local host:8983/solr/nmy_coll ection/update/json/docs'\

"2split=/"\
"&F =t xt i/ rEN
-H ' Content-type:application/json' -d '
{
"first": "John",
"last": "Doe",
"grade": 8,
"exans": |
{
"subject": "Maths",
"test" o "terml”,
"marks" . 90},
{
"subj ect": "Biology",
"test" o "terml”,
"marks" : 86}
]
}

In the above example, we've said all of the fields should be added to a field in Solr named 'txt'. This will add
multiple fields to a single field, so whatever field you choose should be multi-valued.

The default behavior is to use the fully qualified name (FQN) of the node. So, if we don't define any field
mappings, like this:

Apache Solr Reference Guide 5.5 191

curl "http://local host:8983/solr/my_collection/update/json/docs?split=/exans'\
-H ' Content-type:application/json' -d '

{
"first": "John",
"last": "Doe",
"grade": 8,
"exams": [
{
"subject": "Maths",
"test" o "terml",
"mar ks" : 90},
{
"subj ect": "Biology",
"test" o "terml",
"marks" : 86}
]
}

The indexed documents would be added to the index with fields that look like this:

{
"first":"John",
"l ast": " Doe",
"grade": 8,
"exans. subj ect": " Mat hs",
"exans.test":"ternl",
"exans. mar ks": 90},

{
"first":"John",
"l ast":" Doe",
"grade": 8,

"examns. subj ect": " Bi ol ogy",
"exans.test":"ternl",
"exans. mar ks": 86}

Setting JSON Defaults

It is possible to send any json to the / updat e/ j son/ docs endpoint and the default configuration of the
component is as follows:

<i ni t Parans pat h="/update/j son/ docs" >
<l st name="defaul ts">

<I-- this ensures that the entire json doc will be stored verbatiminto one
field -->

<str name="srcField">_src_</str>

<I-- This neans a the uni queKeyField will be extracted fromthe fields and

all fields go into the 'df' field. In this config df is already configured
to be 'text'

-=->
<str name="nmapUni queKeyOnl y" >t rue</str>
<I-- The default search field where all the values are indexed to -->
<str name="df">text</str>
</|st>

</initParans>

Apache Solr Reference Guide 5.5 192

So, if no params are passed, the entire json file would get indexed to the _sr c_ field and all the values in the
input JSON would go to a field named t ext . If there is a value for the uniqueKey it is stored and if no value
could be obtained from the input JSON, a UUID is created and used as the uniqueKey field value.

CSV Formatted Index Updates

CSV formatted update requests may be sent to Solr's / updat e handler using Cont ent - Type:
appl i cation/csv or Cont ent - Type: text/csv.

A sample CSV file is provided at exanpl e/ exanpl edocs/ books. csv that you can use to add some
documents to the Solrt echpr oduct s example:

curl "http://1ocal host:8983/sol r/techproducts/update?comit=true’ --data-binary
@xanpl e/ exanpl edocs/ books. csv -H ' Content-type: application/csv'

CSV Update Parameters

The CSV handler allows the specification of many parameters in the URL in the form: f . par anet er. opti onal
_fiel dname=val ue .

The table below describes the parameters for the update handler.

Parameter Usage Global Example
(9) or
Per
Field
()
separator Character used as field separator; default is "," o,(f: separator=%09
see
split)
trim If true, remove leading and trailing whitespace o,f f.isbn.trim=true
from values. Default=false. trim=false
header Set to true if first line of input contains field g

names. These will be used if the fieldnames par
ameter is absent.

fieldnames Comma separated list of field names to use g fieldnames=ishn,pricetitle
when adding documents.

literal.<field_name> A literal value for a specified field name. g literal.color=red
skip Comma separated list of field names to skip. g skip=uninteresting,shoesize
skipLines Number of lines to discard in the input stream g skipLines=5

before the CSV data starts, including the header,
if present. Default=0.

encapsulator The character optionally used to surround values g,(f: encapsulator="
to preserve characters such as the CSV see
separator or whitespace. This standard CSV split)

format handles the encapsulator itself appearing
in an encapsulated value by doubling the
encapsulator.

Apache Solr Reference Guide 5.5 193

escape The character used for escaping CSV separators g escape=\
or other reserved characters. If an escape is
specified, the encapsulator is not used unless
also explicitly specified since most formats use
either encapsulation or escaping, not both

keepEmpty Keep and index zero length (empty) fields. o.f f.price.keepEmpty=true
Default=false.

map Map one value to another. Format is o,f map=left:right
value:replacement (which can be empty.) f.subject.map=history:bunk

split If true, split a field into multiple values by a f

separate parser.

overwrite If true (the default), check for and overwrite g
duplicate documents, based on the uniqueKey
field declared in the Solr schema. If you know the
documents you are indexing do not contain any
duplicates then you may see a considerable
speed up setting this to false.

commit Issues a commit after the data has been g
ingested.

commitWithin Add the document within the specified number of g commitWithin=10000
milliseconds.

rowid Map the rowid (line number) to a field specified g rowid=id

by the value of the parameter, for instance if your
CSV doesn't have a unique key and you want to
use the row id as such.

rowidOffset Add the given offset (as an int) to the rowid g rowidOffset=10
before adding it to the document. Default is O
Indexing Tab-Delimited files

The same feature used to index CSV documents can also be easily used to index tab-delimited files (TSV files)
and even handle backslash escaping rather than CSV encapsulation.

For example, one can dump a MySQL table to a tab delimited file with:

SELECT * INTO QUTFILE '/tnp/result.txt' FROM nytabl e;

This file could then be imported into Solr by setting the separ at or to tab (%09) and the escape to backslash
(%5¢c).

curl "http://local host: 8983/ sol r/ updat e/ csv?conmi t =t r ue&separ at or =9%99&escape=%bc’
--data-binary @tnp/result.txt

CSV Update Convenience Paths

In addition to the / updat e handler, there is an additional CSV specific request handler path available by default
in Solr, that implicitly override the behavior of some request parameters:

Apache Solr Reference Guide 5.5 194

Path Default Parameters

[updat e/ csv stream content Type=application/csv

The / updat e/ csv path may be useful for clients sending in CSV formatted update commands from applications
where setting the Content-Type proves difficult.

For more information on the CSV Update Request Handler, see https://wiki.apache.org/solr/UpdateCSV.

Nested Child Documents

Solr indexes nested documents in blocks as a way to model documents containing other documents, such as a
blog post parent document and comments as child documents -- or products as parent documents and sizes,
colors, or other variations as child documents. At query time, the Block Join Query Parsers can search these
relationships. In terms of performance, indexing the relationships between documents may be more efficient than
attempting to do joins only at query time, since the relationships are already stored in the index and do not need
to be computed.

Nested documents may be indexed via either the XML or JSON data syntax (or using SolrJ) - but regardless of
syntax, you must include a field that identifies the parent document as a parent; it can be any field that suits this
purpose, and it will be used as input for the block join query parsers.

XML Examples

For example, here are two documents and their child documents:

<add>
<doc>
<field name="id">1</fiel d>
<field nane="title">Solr adds block join support</field>
<field nane="content _type">parent Docunent</fiel d>
<doc>
<field name="id">2</fiel d>
<field nanme="coments">Sol rC oud supports it too!</field>
</ doc>
</ doc>
<doc>
<field nanme="id">3</fiel d>
<field nane="title">New Lucene and Solr release is out</field>
<field nane="cont ent _type">parent Docunent</fi el d>
<doc>
<field name="id">4</fiel d>
<field nane="coments">Lots of new features</field>
</ doc>
</ doc>
</ add>

In this example, we have indexed the parent documents with the field cont ent _t ype, which has the value
"parentDocument”. We could have also used a boolean field, such as i sPar ent , with a value of "true", or any
other similar approach.

JSON Examples

This example is equivalent to the XML example above, note the special _chi | dDocunent s_ key need to
indicate the nested documents in JSON.

Apache Solr Reference Guide 5.5 195

https://wiki.apache.org/solr/UpdateCSV
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-BlockJoinQueryParsers
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-BlockJoinQueryParsers

"idUo "1t
"title": "Solr adds bl ock join support”,
"content _type": "parentDocunent",
" _chil dDocunments_": [
{
"idUo 2",
"comments": "Solrd oud supports it too!"
}
]
B
{
"id": "3",
"title": "New Lucene and Solr release is out",
"content type": "parentDocunent",
" _chil dDocunents_": [
{
"id": "4,
"coments": "Lots of new features”
}
]
}

() Note

One limitation of indexing nested documents is that the whole block of parent-children documents must
be updated together whenever any changes are required. In other words, even if a single child document
or the parent document is changed, the whole block of parent-child documents must be indexed
together.

Uploading Data with Solr Cell using Apache Tika

Solr uses code from the Apache Tika project to provide a framework for incorporating many different file-format
parsers such as Apache PDFBox and Apache POI into Solr itself. Working with this framework, Solr's Ext r act i
ngRequest Handl er can use Tika to support uploading binary files, including files in popular formats such as
Word and PDF, for data extraction and indexing.

When this framework was under development, it was called the Solr Content Extraction Library or CEL; from that
abbreviation came this framework's name: Solr Cell.

If you want to supply your own Cont ent Handl er for Solr to use, you can extend the Ext r act i ngRequest Han
dl er and override the cr eat eFact or y() method. This factory is responsible for constructing the Sol r Cont en
t Handl er that interacts with Tika, and allows literals to override Tika-parsed values. Set the parameter | i t er a
| sOverri de, which normally defaults to *true, to *false" to append Tika-parsed values to literal values.

For more information on Solr's Extracting Request Handler, see https://wiki.apache.org/solr/ExtractingRequestH
andler.

Apache Solr Reference Guide 5.5 196

http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
https://wiki.apache.org/solr/ExtractingRequestHandler
https://wiki.apache.org/solr/ExtractingRequestHandler

Topics covered in this section:

Key Concepts

Trying out Tika with the Solr techproducts Example
Input Parameters

Order of Operations

Configuring the Solr ExtractingRequestHandler
Indexing Encrypted Documents with the ExtractingUpdateRequestHandler
Examples

Sending Documents to Solr with a POST

Sending Documents to Solr with Solr Cell and SolrJ
Related Topics

Key Concepts

When using the Solr Cell framework, it is helpful to keep the following in mind:

® Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and extract the
content appropriately. If you like, you can explicitly specify a MIME type for Tika with the st r eam t ype p
arameter.

® Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a common
interface implemented for many different XML parsers. For more information, see http://www.saxproject.or
g/quickstart.html.

® Solr then responds to Tika's SAX events and creates the fields to index.

® Tika produces metadata such as Title, Subject, and Author according to specifications such as the
DublinCore. See http://tika.apache.org/1.7/formats.html for the file types supported.

® Tika adds all the extracted text to the cont ent field.

® You can map Tika's metadata fields to Solr fields. You can also boost these fields.

® You can pass in literals for field values. Literals will override Tika-parsed values, including fields in the
Tika metadata object, the Tika content field, and any "captured content" fields.

® You can apply an XPath expression to the Tika XHTML to restrict the content that is produced.

@ While Apache Tika is quite powerful, it is not perfect and fails on some files. PDF files are particularly
problematic, mostly due to the PDF format itself. In case of a failure processing any file, the Extracti n
gRequest Handl er does not have a secondary mechanism to try to extract some text from the file; it will
throw an exception and fail.

Trying out Tika with the Solrt echpr oduct s Example

You can try out the Tika framework using the t echpr oduct s example included in Solr.

Start the example:
bin/solr -e techproducts

You can now use curl to send a sample PDF file via HTTP POST:

curl
"http://1ocal host: 8983/ sol r/techproducts/update/ extract?literal.id=docl&onm t=true'
-F "nyfil e=@xanpl e/ exanpl edocs/ sol r-wor d. pdf "

The URL above calls the Extracting Request Handler, uploads the file sol r - wor d. pdf and assigns it the
unigue ID doc 1. Here's a closer look at the components of this command:

Apache Solr Reference Guide 5.5 197

http://www.saxproject.org/quickstart.html
http://www.saxproject.org/quickstart.html
http://tika.apache.org/1.7/formats.html

® Theliteral.id=docl parameter provides the necessary unique ID for the document being indexed.

® The conmit=true paraneter causes Solr to perform a commit after indexing the document, making it
immediately searchable. For optimum performance when loading many documents, don't call the commit
command until you are done.

® The - F flag instructs curl to POST data using the Content-Type rul ti part/f or m dat a and supports
the uploading of binary files. The @ symbol instructs curl to upload the attached file.

® The argument nyfil e=@ut ori al . ht M needs a valid path, which can be absolute or relative.
You can also use bi n/ post to send a PDF file into Solr (without the params, the literal.id parameter would be

set to the absolute path to the file):

bi n/ post -c techproducts exanpl e/ exanpl edocs/sol r-word. pdf -parans "literal.id=a"

Now you should be able to execute a query and find that document. You can make a request like http://| oc
al host : 8983/ sol r/t echpr oduct s/ sel ect ?q=pdf

You may notice that although the content of the sample document has been indexed and stored, there are not a
lot of metadata fields associated with this document. This is because unknown fields are ignored according to the
default parameters configured for the / updat e/ ext r act handler in sol r confi g. xm , and this behavior can
be easily changed or overridden. For example, to store and see all metadata and content, execute the following:

bi n/ post -c techproducts exanpl e/ exanpl edocs/ sol r-word. pdf -parans
"literal.id=docl&uprefix=attr_"

In this command, the upr ef i x=at t r _ parameter causes all generated fields that aren't defined in the schema
to be prefixed with at t r _, which is a dynamic field that is stored and indexed.

This command allows you to query the document using an attribute, as in: htt p: / /| ocal host: 8983/ sol r/t
echproduct s/ sel ect ?2q=attr_neta: m crosoft.

Input Parameters

The table below describes the parameters accepted by the Extracting Request Handler.

Parameter Description

boost.<fieldname> Boosts the specified field by the defined float amount. (Boosting a field alters its
importance in a query response. To learn about boosting fields, see Searching.)

capture Captures XHTML elements with the specified name for a supplementary addition
to the Solr document. This parameter can be useful for copying chunks of the
XHTML into a separate field. For instance, it could be used to grab paragraphs (<p
>) and index them into a separate field. Note that content is still also captured into
the overall "content" field.

captureAttr Indexes attributes of the Tika XHTML elements into separate fields, named after
the element. If set to true, for example, when extracting from HTML, Tika can
return the href attributes in <a> tags as fields named "a". See the examples below.

commitWithin Add the document within the specified number of milliseconds.

date.formats Defines the date format patterns to identify in the documents.

Apache Solr Reference Guide 5.5 198

defaultField

extractOnly

extractFormat

fmap.<source_field>

ignoreTikaException

literal.<fieldname>

literalsOverride

lowernames

multipartUploadLimitinKB

passwordsFile

resource.name

resource.password

tika.config

uprefix

xpath

If the uprefix parameter (see below) is not specified and a field cannot be
determined, the default field will be used.

Default is false. If true, returns the extracted content from Tika without indexing the
document. This literally includes the extracted XHTML as a string in the response.
When viewing manually, it may be useful to use a response format other than XML
to aid in viewing the embedded XHTML tags.For an example, see http://wiki.apach
e.org/solr/TikaExtractOnlyExampleOutput.

Default is "xml", but the other option is "text". Controls the serialization format of
the extract content. The xml format is actually XHTML, the same format that
results from passing the - x command to the Tika command line application, while
the text format is like that produced by Tika's -t command. This parameter is valid
only if ext ract Onl y is set to true.

Maps (moves) one field name to another. The sour ce_fi el d must be a field in
incoming documents, and the value is the Solr field to map to. Example: f nap. co
nt ent =t ext causes the data in the cont ent field generated by Tika to be
moved to the Solr's t ext field.

If true, exceptions found during processing will be skipped. Any metadata
available, however, will be indexed.

Populates a field with the name supplied with the specified value for each
document. The data can be multivalued if the field is multivalued.

If true (the default), literal field values will override other values with the same field
name. If false, literal values defined with | i t er al . <fi el dnanme> will be
appended to data already in the fields extracted from Tika. If setting | i t er al sOv
erri de to "false”, the field must be multivalued.

Values are "true" or "false". If true, all field names will be mapped to lowercase
with underscores, if needed. For example, "Content-Type" would be mapped to
"content_type."

Useful if uploading very large documents, this defines the KB size of documents to
allow.

Defines a file path and name for a file of file name to password mappings.

Specifies the optional name of the file. Tika can use it as a hint for detecting a file's
MIME type.

Defines a password to use for a password-protected PDF or OOXML file

Defines a file path and name to a customized Tika configuration file. This is only
required if you have customized your Tika implementation.

Prefixes all fields that are not defined in the schema with the given prefix. This is
very useful when combined with dynamic field definitions. Example: upr ef i x=i g
nor ed_ would effectively ignore all unknown fields generated by Tika given the
example schema contains <dynami cFi el d nane="i gnored_*" type="i gno
red"/>

When extracting, only return Tika XHTML content that satisfies the given XPath
expression. See http://tika.apache.org/1.7/index.html for details on the format of
Tika XHTML. See also http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput.

Apache Solr Reference Guide 5.5 199

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.7/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

Order of Operations

Here is the order in which the Solr Cell framework, using the Extracting Request Handler and Tika, processes its
input.

1. Tika generates fields or passes them in as literals specified by | i t er al . <fi el dnane>=<val ue>. If | i
teral sOverri de=f al se, literals will be appended as multi-value to the Tika-generated field.

2. If| ower nanes=t r ue, Tika maps fields to lowercase.

Tika applies the mapping rules specified by f map. source =target parameters.

4. If upr ef i x is specified, any unknown field names are prefixed with that value, else if def aul t Fi el d is
specified, any unknown fields are copied to the default field.

w

Configuring the Solr Ext r act i ngRequest Handl er

If you are not working with the supplied sanpl e_t echproducts_configs or data_dri ven_schenma_conf
i gs config set, you must configure your own sol r confi g. xm to know about the Jar's containing the Ext r act
i ngRequest Handl er and it's dependencies:

<lib dir="${solr.install.dir:../../..}/contrib/extraction/lib" regex=".*\.jar" />
<lib dir="${solr.install.dir:../../..}/dist/" regex="solr-cell-\d.*\.jar" />

You can then configure the Ext r act i ngRequest Handl er insol rconfig. xm .

<r equest Handl er name="/updat e/ extract"
cl ass="org. apache. sol r. handl er. extracti on. Extracti ngRequest Handl er ">
<l st name="defaul ts">
<str name="fnmap. Last-Mdi fied">l ast _nodi fi ed</str>
<str name="uprefix">ignored_</str>
</lst>
<I--Optional. Specify a path to a tika configuration file. See the Tika docs for
details.-->
<str name="tika.config">/my/path/to/tika.config</str>
<I-- Optional. Specify one or nore date formats to parse. See
Dat eUt i | . DEFAULT_DATE_FORVATS
for default date formats -->
<l st nanme="date.formats">
<str>yyyy- M dd</str>
</[lst>
</ request Handl er >

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named | ast _nodi fi e
d. We are also telling it to ignore undeclared fields. These are all overridden parameters.

The t i ka. confi g entry points to a file containing a Tika configuration. The dat e. f or mat s allows you to
specify various j ava. t ext . Si npl eDat eFor mat s date formats for working with transforming extracted input to
a Date. Solr comes configured with the following date formats (see the Dat eUt i | in Solr):

yyyy- Mt dd' T' HH: mm ss' Z'

yyyy- Mt dd' T' HH: nm ss

yyyy- MV dd

yyyy- MM dd hh: nm ss

yyyy- MMt dd HH: mm ss

EEE MW d hh: mm ss z yyyy
EEE, dd MW yyyy HH mm ss zzz

Apache Solr Reference Guide 5.5 200

EEEE, dd- MWryy HH. mm ss zzz
EEE MW d HH: nm ss yyyy

You may also need to adjust the nul t i part Upl oadLi mi t | nKB attribute as follows if you are submitting very

large documents.

<request Di spat cher handl eSel ect="true" >
<request Parsers enabl eRenot eStream ng="fal se" mul ti partUpl oadLi m t| nKB="20480" />

Multi-Core Configuration

For a multi-core configuration, you can specify shar edLi b="11i b' in the <sol r/ > section of sol r. xm and
place the necessary jar files there.

For more information about Solr cores, see The Well-Configured Solr Instance.

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler

The ExtractingRequestHandler will decrypt encrypted files and index their content if you supply a password in
either r esour ce. passwor d on the request, or in a passwor dsFi | e file.

In the case of passwor dsFi | e, the file supplied must be formatted so there is one line per rule. Each rule
contains a file name regular expression, followed by "=", then the password in clear-text. Because the passwords
are in clear-text, the file should have strict access restrictions.

This is a coment

nyFi | eName = nyPassword
.*\ . docx$ = nyWrdPassword
.*\ . pdf $ = nyPdf Password

Examples

Metadata

As mentioned before, Tika produces metadata about the document. Metadata describes different aspects of a
document, such as the author's name, the number of pages, the file size, and so on. The metadata produced
depends on the type of document submitted. For instance, PDFs have different metadata than Word documents
do.

In addition to Tika's metadata, Solr adds the following metadata (defined in Ext r act i ngiet adat aConst ant s)

Solr Metadata Description

stream_name The name of the Content Stream as uploaded to Solr. Depending on how the file is
uploaded, this may or may not be set

stream_source_info Any source info about the stream. (See the section on Content Streams later in this
section.)

stream_size The size of the stream in bytes.

Apache Solr Reference Guide 5.5 201

stream_content_type The content type of the stream, if available.

I We recommend that you try using the ext r act Onl y option to discover which values Solr is setting for

these metadata elements.

Examples of Uploads Using the Extracting Request Handler

Capture and Mapping
The command below captures <di v> tags separately, and then maps all the instances of that field to a dynamic
field named f oo _t.

bi n/ post -c techproducts exanpl e/ exanpl edocs/ sanpl e. ht M - par ans

"literal.id=doc2&captureAttr=true&defaul tFiel d=_text_ &f map. di v=f oo_t &apt ur e=di v"

Capture, Mapping, and Boosting
The command below captures <di v> tags separately, maps the field to a dynamic field named f oo _t , then

boosts f oo_t by 3.

bi n/ post -c techproducts exanpl e/ exanpl edocs/ sanpl e. ht i - par ans

"l'iteral .id=doc3&captureAttr=true&defaul tField=_text_&capture=di v& map. di v=f oo_t &oo

st.foo_t=3"

Using Literals to Define Your Own Metadata

To add in your own metadata, pass in the literal parameter along with the file:

bi n/ post -c techproducts -parans
"literal .id=doc4&captureAttr=true&defaul t Fi el d=t ext &apt ur e=di v&f map. di v=f oo_t &boost

.foo_t=3&iteral.bl ah_s=Bah" exanpl e/ exanpl edocs/ sanpl e. ht m

XPath
The example below passes in an XPath expression to restrict the XHTML returned by Tika:

bi n/ post -c techproducts -parans
"literal.id=doc5&captureAttr=true&defaul t Fi el d=t ext &apt ur e=di v&f map. di v=f oo_t &boost

. foo_t =3&xpat h=/ xht nl : ht m / xht 1 : body/ xht n : di v/ / node() "
exanpl e/ exanpl edocs/ sanpl e. ht

Extracting Data without Indexing It

Solr allows you to extract data without indexing. You might want to do this if you're using Solr solely as an
extraction server or if you're interested in testing Solr extraction.

The example below sets the ext r act Onl y=t r ue parameter to extract data without indexing it.

Apache Solr Reference Guide 5.5

202

curl "http://1ocal host: 8983/ sol r/techproducts/update/extract ?&extract Onl y=true"
--dat a- bi nary @xanpl e/ exanpl edocs/ sanpl e.html -H ' Content-type:text/htm"

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different output format
to make it more readable ("-out yes’ instructs the tool to echo Solr's output to the console):

bi n/ post -c techproducts -parans "extract Onl y=true&w =r uby& ndent =true" -out yes
exanpl e/ exanpl edocs/ sanpl e. ht m

Sending Documents to Solr with a POST

The example below streams the file as the body of the POST, which does not, then, provide information to Solr
about the name of the file.

curl

"http://1ocal host: 8983/ sol r/techproducts/update/ extract?literal.id=doc6&defaul tField
=t ext &commi t =t rue" --dat a-bi nary @xanpl e/ exanpl edocs/sanple. htm -H
"Content-type:text/htm"

Sending Documents to Solr with Solr Cell and SolrJ

Solrd is a Java client that you can use to add documents to the index, update the index, or query the index. You'll
find more information on SolrJ in Client APIs.

Here's an example of using Solr Cell and SolrJ to add documents to a Solr index.

First, let's use SolrJ to create a new SolrClient, then we'll construct a request containing a ContentStream
(essentially a wrapper around a file) and sent it to Solr:

public class SolrcCell Request Denp {
public static void main (String[] args) throws | OException, SolrServerException {
SolrClient server = new
HtpSolrCient("http://1ocal host:8983/solr/ny_collection");
Cont ent St r eampdat eRequest req = new
Cont ent St r eamJpdat eRequest ("/ updat e/ extract");
req. addFil e(new File("ny-file.pdf"));
req. set Paran(Ext racti ngPar ans. EXTRACT_ONLY, "true");
NamedLi st <Cbj ect > result = server.request(req);
Systemout.printin("Result: " + result);

This operation streams the file my-fi | e. pdf into the Solr index for my_col | ecti on.

The sample code above calls the extract command, but you can easily substitute other commands that are
supported by Solr Cell. The key class to use is the Cont ent St r eampdat eRequest , which makes sure the
ContentStreams are set properly. SolrJ takes care of the rest.

Note that the Cont ent St r eampdat eRequest is not just specific to Solr Cell. You can send CSV to the CSV
Update handler and to any other Request Handler that works with Content Streams for updates.

Related Topics

Apache Solr Reference Guide 5.5 203

® ExtractingRequestHandler

Uploading Structured Data Store Data with the Data Import
Handler

Many search applications store the content to be indexed in a structured data store, such as a relational
database. The Data Import Handler (DIH) provides a mechanism for importing content from a data store and
indexing it. In addition to relational databases, DIH can index content from HTTP based data sources such as
RSS and ATOM feeds, e-mail repositories, and structured XML where an XPath processor is used to generate
fields.

The exanpl e/ exanpl e- DI Hdirectory contains several collections many of the features of the data import
handler. To run this "di h" example:

bin/solr -e dih

For more information about the Data Import Handler, see https://wiki.apache.org/solr/DatalmportHandler.
Topics covered in this section:
® Concepts and Terminology
Configuration
Data Import Handler Commands
Property Writer
Data Sources
Entity Processors
Transformers
Special Commands for the Data Import Handler

Concepts and Terminology

Descriptions of the Data Import Handler use several familiar terms, such as entity and processor, in specific
ways, as explained in the table below.

Term Definition

Datasource As its name suggests, a datasource defines the location of the data of interest. For a database,
it's a DSN. For an HTTP datasource, it's the base URL.

Entity Conceptually, an entity is processed to generate a set of documents, containing multiple fields,
which (after optionally being transformed in various ways) are sent to Solr for indexing. For a
RDBMS data source, an entity is a view or table, which would be processed by one or more
SQL statements to generate a set of rows (documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source, transforming it, and
adding it to the index. Custom entity processors can be written to extend or replace the ones
supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process can modify
the fields, create new fields, or generate multiple rows/documents form a single row. There are
several built-in transformers in the DIH, which perform functions such as modifying dates and
stripping HTML. It is possible to write custom transformers using the publicly available interface.

Apache Solr Reference Guide 5.5 204

http://wiki.apache.org/solr/ExtractingRequestHandler
https://wiki.apache.org/solr/DataImportHandler

Configuration

Configuring sol rconfi g. xm

The Data Import Handler has to be registered in sol r confi g. xnl . For example:

<request Handl er nane="/dat ai nport"
cl ass="org. apache. sol r. handl er . dat ai nport . Dat al npor t Handl er " >
<l st name="defaul ts">
<str nanme="config">/path/to/ nmy/Dl Hconfigfile.xm </str>
</[lst>
</ request Handl er >

The only required parameter is the conf i g parameter, which specifies the location of the DIH configuration file
that contains specifications for the data source, how to fetch data, what data to fetch, and how to process it to
generate the Solr documents to be posted to the index.

You can have multiple DIH configuration files. Each file would require a separate definition in the sol r confi g.
xnl file, specifying a path to the file.

Configuring the DIH Configuration File

An annotated configuration file, based on the "db" collection in the di h example server, is shown below (exanpl
e/ exanpl e- DI H sol r/ db/ conf/ db- dat a- confi g. xml). It extracts fields from the four tables defining a
simple product database, with this schema. More information about the parameters and options shown here are
described in the sections following.

<dat aConfi g>
<I-- The first elenent is the dataSource, in this case an HSQLDB dat abase.
The path to the JDBC driver and the JDBC URL and | ogin credentials are all
speci fied here.
O her pernissible attributes include whether or not to autocommit to Solr, the
bat chsi ze
used in the JDBC connection, a 'readOnly' flag.
The password attribute is optional if there is no password set for the DB.
oD
<dat aSource driver="org. hsql db. jdbcDriver"
url ="j dbc: hsqgl db: . / exanpl e- DI H hsql db/ ex" user="sa" password="secret"/>
<l--
Al ternately the password can be encrypted as follows. This is the val ue obtained as
a result of the comand
openssl enc -aes-128-chc -a -salt -in pwd.txt
passwor d="U2FsdGvk X18QV YOyf Cqgl f BMrAB4d3XkwY96L7gf C2o="
WHen the password is encrypted, you nust provide an extra attribute
encrypt KeyFi | e="/1 ocati on/ of / encrypti onkey"
This file should a text file with a single line containing the encrypt/decrypt
password

S
<I-- A '"docunent' elenent follows, containing nultiple "entity' elenents.
Note that 'entity' elenents can be nested, and this allows the entity
rel ationships in the sanple database to be mrrored here, so that we can
generate a denornalized Solr record which may include multiple features
for one item for instance -->
<docunent >

Apache Solr Reference Guide 5.5 205

<l-- The possible attributes for the entity elenent are described bel ow
Entity elements may contain one or nore 'field elenents, which map
the data source field names to Solr fields, and optionally specify
per-field transformations -->
<l-- this entity is the '"root' entity. -->
<entity nanme="itenl' query="select * fromitent
del taQuery="select id fromitemwhere |ast_nodified >
"${datai nporter.last_index_tine}"">
<field col um="NAME" nanme="nane" />

<I-- This entity is nested and reflects the one-to-many rel ati onship between an item
and its multiple features.
Note the use of variables; ${itemID} is the value of the colum 'ID for the
current item
(‘"item referring to the entity nane) -->
<entity nanme="feature"
query="sel ect DESCRI PTI ON from FEATURE where | TEM ID="${itemID}"'"
del taQuery="sel ect I TEM ID from FEATURE where | ast_nodified >
"${datai nporter.last_index_tine}""
parent Del taQuery="select ID fromitemwhere |D=${feature.| TEM ID}">
<field name="features" col um="DESCRI PTI ON' />
</entity>
<entity nanme="item category"
query="sel ect CATEGORY_ID fromitem category where
ITEMID="${itemID}""
del taQuery="sel ect I TEM ID, CATEGORY_ID fromitem category where
| ast _nodified > ' ${datai nporter.last_index_time}""
parent Del taQuery="select ID fromitem where
| D=%{i tem category. | TEM | D} " >
<entity nane="category"
query="sel ect DESCRI PTI ON from category where |ID =
"${item category. CATEGORY_ID}"' "
del taQuery="sel ect ID fromcategory where | ast_nodified >
"${datai nporter.last_index_time}""
parent Del t aQuery="sel ect | TEM ID, CATEGORY_ID fromitem category
wher e CATECGORY_I D=%${category.|D}">
<field colum="description" nanme="cat" />
</entity>
</entity>

Apache Solr Reference Guide 5.5 206

</entity>
</ docunent >
</ dat aConfi g>

Datasources can still be specified in sol r conf i g. xm . These must be specified in the defaults section of the
handler in sol r conf i g. xm . However, these are not parsed until the main configuration is loaded.

The entire configuration itself can be passed as a request parameter using the dat aConf i g parameter rather
than using a file. When configuration errors are encountered, the error message is returned in XML format.

Ar el oad- confi g command is also supported, which is useful for validating a new configuration file, or if you
want to specify a file, load it, and not have it reloaded again on import. If there is an xnml mistake in the
configuration a user-friendly message is returned in xml format. You can then fix the problem and do a r el oad-
config.

@ You can also view the DIH configuration in the Solr Admin Ul and there is an interface to import content.

Request Parameters
Request parameters can be substituted in configuration with placeholder ${ dat ai nport er. r equest . paramn

ane}.

<dat aSource driver="org. hsql db. jdbcDriver" url="${datai nporter.request.jdbcurl}"
user =" ${dat ai nporter.request.jdbcuser}"”
passwor d=${ dat ai nporter.request.jdbcpassword} />

Then, these parameters can be passed to the full-import command or defined in the <def aul t s> section in sol
rconfi g. xm . This example shows the parameters with the full-import command:

dat ai npor t 2command=f ul | -i nport & dbcurl =j dbc: hsql db: ./ exanpl e- DI H hsql db/ ex& dbcuse
r =sag&j dbcpasswor d=secr et

Data Import Handler Commands

DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description

abort Aborts an ongoing operation. The URL is ht t p: / / <host >: <port >/ sol r/ <col | ecti
on_name>/ dat ai nport ? conmand=abort .

del ta-i nport For incremental imports and change detection. The command is of the form htt p: // <ho
st>: <port>/ solr/ <col |l ecti on_nanme>/ dat ai nport ? command=del t a-i npor
t . It supports the same clean, commit, optimize and debug parameters as full-import
command. Only the SqglEntityProcessor supports delta imports.

Apache Solr Reference Guide 5.5 207

full-inport A Full Import operation can be started with a URL of the form ht t p: / / <host >: <port >/
sol r/ <col | ecti on_nane>/ dat ai nport ? cormand=f ul | -i nport. The command
returns immediately. The operation will be started in a new thread and the status attribute
in the response should be shown as busy. The operation may take some time depending
on the size of dataset. Queries to Solr are not blocked during full-imports.
When a full-import command is executed, it stores the start time of the operation in a file
located at conf / dat ai nport . properti es. This stored timestamp is used when a
delta-import operation is executed.
For a list of parameters that can be passed to this command, see below.

rel oad- confi g If the configuration file has been changed and you wish to reload it without restarting Solr,
run the command

htt p://<host>: <port >/sol r/ <col | ecti on_nanme>/ conmand=r el oad- confi g

status The URL is htt p: // <host >: <port >/ solr/ <col | ecti on_nane>/ datai nport?c
ommand=st at us. It returns statistics on the number of documents created, deleted,
gueries run, rows fetched, status, and so on.

Parameters for the ful | -i nport Command
The ful | -i mport command accepts the following parameters:
Parameter Description
clean Default is true. Tells whether to clean up the index before the indexing is started.
commit Default is true. Tells whether to commit after the operation.
debug Default is false Runs the command in debug mode. It is used by the interactive development

mode. Note that in debug mode, documents are never committed automatically. If you want to
run debug mode and commit the results too, add commi t =t r ue as a request parameter.

entity The name of an entity directly under the <docunent > tag in the configuration file. Use this to
execute one or more entities selectively. Multiple "entity” parameters can be passed on to run
multiple entities at once. If nothing is passed, all entities are executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

synchronous Blocks request until import is completed. Default is f al se.

Property Writer

The propertyWi t er element defines the date format and locale for use with delta queries. It is an optional
configuration. Add the element to the DIH configuration file, directly under the dat aConf i g element.

<propertyWiter dateFornmat="yyyy-M#dd HH nm ss" type="Si npl eProperti esWiter"
directory="data" fil enane="ny_di h. properties" |ocale="en_US" />

The parameters available are:

Parameter Description

Apache Solr Reference Guide 5.5 208

dateFormat A java.text.SimpleDateFormat to use when converting the date to text. The default is
"yyyy-MM-dd HH:mm:ss".

type The implementation class. Use Si npl eProperti esWiter for non-SolrCloud installations. If
using SolrCloud, use ZKPr operti esWi t er. If this is not specified, it will default to the
appropriate class depending on if SolrCloud mode is enabled.

directory Used with the Si npl eProperti esWi t er only). The directory for the properties file. If not
specified, the default is "conf".

filename Used with the Si npl eProperti esWit er only). The name of the properties file. If not
specified, the default is the requestHandler name (as defined in sol r conf i g. xm , appended
by ".properties" (i.e., "dataimport.properties").

locale The locale. If not defined, the ROOT locale is used. It must be specified as language-country.
For example, en- US.

Data Sources

A data source specifies the origin of data and its type. Somewhat confusingly, some data sources are configured
within the associated entity processor. Data sources can also be specified in sol r confi g. xm , which is useful
when you have multiple environments (for example, development, QA, and production) differing only in their data
sources.

You can create a custom data source by writing a class that extends or g. apache. sol r. handl| er . dat ai npo
rt. Dat aSour ce.

The mandatory attributes for a data source definition are its name and type. The name identifies the data source
to an Entity element.

The types of data sources available are described below.

ContentStreamDataSource

This takes the POST data as the data source. This can be used with any EntityProcessor that uses a Dat aSour
ce<Reader >.

FieldReaderDataSource

This can be used where a database field contains XML which you wish to process using the
XPathEntityProcessor. You would set up a configuration with both JDBC and FieldReader data sources, and two
entities, as follows:

Apache Solr Reference Guide 5.5 209

<dat aSour ce nanme="al" driver="org. hsql db.jdbcDriver" ... />
<dat aSour ce name="a2" type=Fi el dReader Dat aSour ce" />
<docunent >

<!-- processor for database -->

<entity nanme ="el" dataSource="al" processor="Sgl EntityProcessor" pk="docid"
query="select * fromtl ...">

<I-- nested XpathEntity; the field in the parent which is to be used for
Xpath is set in the "datafield" attribute in place of the "url" attribute

-->
<entity nanme="e2" dataSource="a2" processor="XPat hEntityProcessor"
dat aFi el d="el. fi el dToUseFor XPat h" >
<l-- Xpath configuration follows -->
</entity>
</entity>

The FieldReaderDataSource can take an encodi ng parameter, which will default to "UTF-8" if not specified.It
must be specified as language-country. For example, en- US.

FileDataSource

This can be used like an URLDataSource, but is used to fetch content from files on disk. The only difference from
URLDataSource, when accessing disk files, is how a pathname is specified.

This data source accepts these optional attributes.

Optional Attribute Description

basePath The base path relative to which the value is evaluated if it is not absolute.
encoding Defines the character encoding to use. If not defined, UTF-8 is used.
JdbcDataSource

This is the default datasource. It's used with the SqlEntityProcessor. See the example in the FieldReaderDataSo
urce section for details on configuration.

URLDataSource

This data source is often used with XPathEntityProcessor to fetch content from an underlying fil e:// orhttp
: 1/ location. Here's an example:

<dat aSour ce nane="a"
t ype="URLDat aSour ce"
baseUr| ="http://host:port/"
encodi ng="UTF- 8"
connect i onTi meout =" 5000"
readTi neout =" 10000"/ >

Apache Solr Reference Guide 5.5 210

The URLDataSource type accepts these optional parameters:

Optional Description
Parameter
baseURL Specifies a new baseURL for pathnames. You can use this to specify host/port changes

between Dev/QA/Prod environments. Using this attribute isolates the changes to be
made to the sol rconfi g. xm

connectionTimeout = Specifies the length of time in milliseconds after which the connection should time out.
The default value is 5000ms.

encoding By default the encoding in the response header is used. You can use this property to
override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation should time out.
The default value is 10000ms.

Entity Processors

Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include views or
tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there are
non-specific attributes common to all entities which may be specified.

Attribute Use

dataSource The name of a data source. If there are multiple data sources defined, use this
attribute with the name of the data source for this entity.

name Required. The unique name used to identify an entity.

pk The primary key for the entity. It is optional, and required only when using
delta-imports. It has no relation to the uniqueKey defined in schena. xm but they
can both be the same. It is mandatory if you do delta-imports and then refers to the
column name in ${ dat ai nporter. del t a. <col umm- name>} which is used as the

primary key.
processor Default is SglEntityProcessor. Required only if the datasource is not RDBMS.
onError Permissible values are (abort|skip|continue) . The default value is 'abort'. 'Skip' skips

the current document. ‘Continue’ ignores the error and processing continues.

prelmportDeleteQuery = Before a full-import command, use this query this to cleanup the index instead of
using "*:*'. This is honored only on an entity that is an immediate sub-child of <docu
nment >.

postimportDeleteQuery = Similar to the above, but executed after the import has completed.

rootEntity By default the entities immediately under the <docunent > are root entities. If this
attribute is set to false, the entity directly falling under that entity will be treated as
the root entity (and so on). For every row returned by the root entity, a document is
created in Solr.

transformer Optional. One or more transformers to be applied on this entity.

Apache Solr Reference Guide 5.5 211

cachelmpl Optional. A class (which must implement DI HCache) to use for caching this entity
when doing lookups from an entity which wraps it. Provided implementation is "Sor t

edMapBackedCache".

cacheKey The name of a property of this entity to use as a cache key if cachel npl is
specified.

cachelLookup An entity + property name that will be used to lookup cached instances of this entity

if cachel npl is specified.

where an alternative way to specify cacheKey and cacheLookup concatenated with '=".
eg wher e=" CODE=Peopl e. COUNTRY_CODE" is equal to cacheKey=" CODE"
cacheLookup="Peopl e. COUNTRY_CCDE"

child="true" Enables indexing document blocks aka Nested Child Documents for searching with
Block Join Query Parsers. It can be only specified on <ent i t y> under another root
entity. It switches from default behavior (merging field values) to nesting documents
as children documents. Note: parent <ent i t y> should add a field which is used as
a parent filter in query time.

join="zipper" Enables merge join aka "zipper" algorithm for joining parent and child entities without
cache. It should be specified at child (nested) <ent i t y>. It implies that parent and
child queries return results ordered by keys, otherwise it throws an exception. Keys
should be specified either with wher e attribute or with cacheKey and cacheLooku

p.

Caching of entities in DIH is provided to avoid repeated lookups for same entities again and again. The default S
ort edMapBackedCache is a HashMap where a key is a field in the row and the value is a bunch of rows for that
same key.

In the example below, each manuf act ur er entity is cached using the 'i d' property as a cache key. Cache
lookups will be performed for each pr oduct entity based on the product's "manu" property. When the cache has
no data for a particular key, the query is run and the cache is populated

<entity nane="product" query="sel ect description,sku, manu from product" >

<entity name="manufacturer" query="select id, nane from manufacturer”
cacheKey="id" cacheLookup="product. manu" cachel npl =" Sort edMapBackedCache"/ >
</entity>

The SQL Entity Processor

The SqlEntityProcessor is the default processor. The associated data source should be a JDBC URL.

The entity attributes specific to this processor are shown in the table below.

Attribute Use
query Required. The SQL query used to select rows.
deltaQuery SQL query used if the operation is delta-import. This query selects the primary keys of the

rows which will be parts of the delta-update. The pks will be available to the
deltalmportQuery through the variable ${ dat ai nport er . del t a. <col umtm- name>}.

parentDeltaQuery SQL query used if the operation is delta-import.

Apache Solr Reference Guide 5.5 212

deletedPkQuery SQL query used if the operation is delta-import.

deltalmportQuery SQL query used if the operation is delta-import. If this is not present, DIH tries to construct
the import query by(after identifying the delta) modifying the 'query’ (this is error prone).
There is a namespace ${ dat ai nport er. del t a. <col unm- nane>} which can be used
in this query. For example, sel ect * fromthbl where
i d=${dat ai nporter.delta.id}.

The XPathEntityProcessor

This processor is used when indexing XML formatted data. The data source is typically URLDataSource or FileD
ataSource. Xpath can also be used with the FileListEntityProcessor described below, to generate a document
from each file.

The entity attributes unique to this processor are shown below.

Attribute Use
Processor Required. Must be set to "XpathEntityProcessor".
url Required. HTTP URL or file location.
stream Optional: Set to true for a large file or download.
forEach Required unless you define useSol r AddScherma. The Xpath expression which

demarcates each record. This will be used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the name of a resource used as a
preprocessor for applying the XSL transformation.

useSolrAddSchema Set this to true if the content is in the form of the standard Solr update XML schema.

flatten Optional: If set true, then text from under all the tags is extracted into one field.
Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use

xpath Required. The XPath expression which will extract the content from the record for this field.
Only a subset of Xpath syntax is supported.

commonField Optional. If true, then when this field is encountered in a record it will be copied to future
records when creating a Solr document.

Here is an example from the "r ss" collection in the di h example (exanpl e/ exanpl e- DI H sol r/rss/ conf/
rss-data-config.xm):

Apache Solr Reference Guide 5.5 213

<!-- slashdot RSS Feed --->
<dat aConfi g>
<dat aSour ce type="Htt pDat aSource" />
<docunent >
<entity nane="sl ashdot"

pk="11i nk"
url ="http://rss.slashdot. org/ Sl ashdot/ sl ashdot "
processor =" XPat hEnt i t yProcessor"

<!-- forEach sets up a processing |loop ; here there are two
expressi ons- - >
f or Each="/ RDF/ channel | /RDF/itent
t ransf or mer =" Dat eFor mat Tr ansf or ner " >
<field col um="source" xpath="/RDF/ channel/title" comonFiel d="true" />
<field colum="source-|ink" xpath="/RDF/ channel/link" commonFi el d="true"/>
<field colum="subj ect" xpath="/RDF/ channel / subj ect" commonFi el d="true" />
<field colum="title" xpath="/RDF/itemtitle" />
<field colum="1ink" xpath="/RDF/itenl|ink" />
<field colum="description" xpath="/RDF/iten description" />
<field colum="creator" xpath="/RDF/item creator" />
<field colum="item subject" xpath="/RDF/item subject" />
<field colum="date" xpath="/RDF/ itenl date"
dat eTi meFor mat ="yyyy- Mt dd' T' hh: mm ss" />
<field colum="sl ash-departnent” xpath="/RDF/item departnent"” />
<field colum="sl ash-secti on" xpath="/RDF/itenlsection" />
<field col um="sl ash-coment s" xpat h="/RDF/item comments" />
</entity>
</ docunent >
</ dat aConfi g>

The MailEntityProcessor

The MailEntityProcessor uses the Java Mail API to index email messages using the IMAP protocol. The
MailEntityProcessor works by connecting to a specified mailbox using a username and password, fetching the
email headers for each message, and then fetching the full email contents to construct a document (one
document for each mail message).

Here is an example from the "mai | " collection of the di h example (exanpl e/ exanpl e- DI H mai | / conf / mai
| -dat a-config. xm):

<dat aConfi g>
<docunent >
<entity processor="Mil EntityProcessor"
user ="emai | @nui |l . cont
passwor d=" passwor d"
host ="i map. gnai | . cont'
prot ocol ="i maps"
f et chMai | sSi nce="2009- 09- 20 00: 00: 00"
bat chSi ze="20"
f ol ders="i nbox"
processAttachement ="f al se"
name="sanpl e_entity"/>
</ docunent >
</ dat aConfi g>

Apache Solr Reference Guide 5.5 214

The entity attributes unique to the MailEntityProcessor are shown below.

Attribute
processor

user

password
host
protocol

fetchMailsSince

folders

recurse

include

exclude

processAttachement
or

processAttachments

includeContent

Use
Required. Must be set to "MailEntityProcessor".

Required. Username for authenticating to the IMAP server; this is typically the email
address of the mailbox owner.

Required. Password for authenticating to the IMAP server.
Required. The IMAP server to connect to.
Required. The IMAP protocol to use, valid values are: imap, imaps, gimap, and gimaps.

Optional. Date/time used to set a filter to import messages that occur after the specified
date; expected format is: yyyy- MM dd HH: mm ss.

Required. Comma-delimited list of folder names to pull messages from, such as
"inbox".

Optional (default is true). Flag to indicate if the processor should recurse all child
folders when looking for messages to import.

Optional. Comma-delimited list of folder patterns to include when processing folders
(can be a literal value or regular expression).

Optional. Comma-delimited list of folder patterns to exclude when processing folders
(can be a literal value or regular expression); excluded folder patterns take precedence
over include folder patterns.

Optional (default is true). Use Tika to process message attachments.

Optional (default is true). Include the message body when constructing Solr documents
for indexing.

Importing New Emails Only

After running a full import, the MailEntityProcessor keeps track of the timestamp of the previous import so that
subsequent imports can use the fetchMailsSince filter to only pull new messages from the mail server. This
occurs automatically using the Data Import Handler dataimport.properties file (stored in conf). For instance, if you
set fetchMailsSince=2014-08-22 00:00:00 in your mail-data-config.xml, then all mail messages that occur after
this date will be imported on the first run of the importer. Subsequent imports will use the date of the previous
import as the fetchMailsSince filter, so that only new emails since the last import are indexed each time.

GMail Extensions

When connecting to a GMail account, you can improve the efficiency of the MailEntityProcessor by setting the
protocol to gimap or gimaps. This allows the processor to send the fetchMailsSince filter to the GMail server to
have the date filter applied on the server, which means the processor only receives new messages from the
server. However, GMail only supports date granularity, so the server-side filter may return previously seen
messages if run more than once a day.

The TikaEntityProcessor

Apache Solr Reference Guide 5.5

215

The TikaEntityProcessor uses Apache Tika to process incoming documents. This is similar to Uploading Data
with Solr Cell using Apache Tika, but using the DatalmportHandler options instead.

Here is an example from the "t i ka" collection of the di h example (exanpl e/ exanpl e-DI H ti ka/ conf/ti k
a- dat a- confi g. xm):

<dat aConfi g>
<dat aSour ce type="Bi nFi | eDat aSour ce" />
<docunent >
<entity nanme="tika-test" processor="Ti kaEntityProcessor"
url ="../contrib/extraction/src/test-files/extraction/solr-word.pdf"
format="text">
<field col um="Aut hor" nanme="author" nmeta="true"/>
<field colum="title" name="title" neta="true"/>
<field colum="text" name="text"/>
</entity>
</ docunent >
</ dat aConfi g>

The parameters for this processor are described in the table below:

Attribute Use

dataSource This parameter defines the data source and an optional name which can be referred to in
later parts of the configuration if needed. This is the same dataSource explained in the
description of general entity processor attributes above.

The available data source types for this processor are:

* BinURLDataSource: used for HTTP resources, but can also be used for files.
® BinContentStreamDataSource: used for uploading content as a stream.
® BinFileDataSource: used for content on the local filesystem.

url The path to the source file(s), as a file path or a traditional internet URL. This parameter is
required.
htmIMapper Allows control of how Tika parses HTML. The "default" mapper strips much of the HTML

from documents while the "identity" mapper passes all HTML as-is with no modifications. If
this parameter is defined, it must be either default or identity; if it is absent, "default" is
assumed.

format The output format. The options are text, xml, html or none. The default is "text" if not
defined. The format "none" can be used if metadata only should be indexed and not the
body of the documents.

parser The default parser is or g. apache. ti ka. par ser. Aut oDet ect Par ser . If a custom or
other parser should be used, it should be entered as a fully-qualified name of the class
and path.

fields The list of fields from the input documents and how they should be mapped to Solr fields.

If the attribute net a is defined as "true", the field will be obtained from the metadata of the
document and not parsed from the body of the main text.

extractEmbedded Instructs the TikaEntityProcessor to extract embedded documents or attachments when tr
ue. If false, embedded documents and attachments will be ignored.

Apache Solr Reference Guide 5.5 216

onError

By default, the TikaEntityProcessor will stop processing documents if it finds one that

generates an error. If you define onEr r or to "skip", the TikaEntityProcessor will instead
skip documents that fail processing and log a message that the document was skipped.

The FileListEntityProcessor

This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions specified in

the attributes which can then be passed to another processor, such as the XPathEntityProcessor. The entity

information for this processor would be nested within the FileListEnitity entry. It generates five implicit fields: fi |

eAbsol ut ePat h,

processor. This processor does not use a data source.

The attributes specific to this processor are described in the table below:

Attribute

fileName
basedir
recursive
excludes
newerThan
olderThan

rootEntity

dataSource

Use
Required. A regular expression pattern to identify files to be included.
Required. The base directory (absolute path).
Whether to search directories recursively. Default is ‘false'.
A regular expression pattern to identify files which will be excluded.
A date in the format yyyy- MM ddHH: nm ss or a date math expression (NOV - 2YEARS).
A date, using the same formats as newerThan.

This should be set to false. This ensures that each row (filepath) emitted by this processor is
considered to be a document.

Must be set to null.

The example below shows the combination of the FileListEntityProcessor with another processor which will
generate a set of fields from each file found.

Apache Solr Reference Guide 5.5

fileDir, fileSize, filelLastMdified, file, whichcan be used in the nested

217

<dat aConfi g>
<dat aSour ce type="Fil| eDat aSource"/ >
<docunent >
<I-- this outer processor generates a list of files satisfying the conditions
specified in the attributes -->
<entity name="f" processor="FileListEntityProcessor"
fil eName=".*xm"
newer Than="" NOW 30DAYS' "
recursive="true"
root Entity="fal se"
dat aSour ce="nul | "
baseDi r ="/ ny/ docunent/directory">

<I-- this processor extracts content using Xpath fromeach file found -->

<entity name="nested" processor="XPathEntityProcessor"
forEach="/rootel enent" url="${f.fil eAbsol utePath}" >
<field col um="nanme" xpath="/rootel enent/nane"/>
<field col um="nunber" xpath="/rootel enent/nunber"/>
</entity>
</entity>
</ docunent >
</ dat aConfi g>

LineEntityProcessor

This EntityProcessor reads all content from the data source on a line by line basis and returns a field called r awL
i ne for each line read. The content is not parsed in any way; however, you may add transformers to manipulate
the data within the r awLi ne field, or to create other additional fields.

The lines read can be filtered by two regular expressions specified with the accept Li neRegex and omi t Li neR
egex attributes. The table below describes the LineEntityProcessor's attributes:

Attribute Description

url A required attribute that specifies the location of the input file in a way that is compatible
with the configured data source. If this value is relative and you are using FileDataSource
or URLDataSource, it assumed to be relative to baselLoc.

acceptLineRegex An optional attribute that if present discards any line which does not match the regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that discards any line
which matches this regExp.

For example:

<entity nane="jc"
processor="Li neEntityProcessor"
accept Li neRegex="".*\ . xm $"
om t Li neRegex="/ obsol et e"
url="file:///Volunes/ts/files.lis"
rootEntity="fal se"
dat aSour ce="nyURI r eader 1"
t ransf or mer =" RegexTr ansf or ner, Dat eFor mat Tr ansf or ner " >

Apache Solr Reference Guide 5.5 218

While there are use cases where you might need to create a Solr document for each line read from a file, it is
expected that in most cases that the lines read by this processor will consist of a pathname, which in turn will be
consumed by another EntityProcessor, such as XPathEntityProcessor.

PlainTextEntityProcessor

This EntityProcessor reads all content from the data source into an single implicit field called pl ai nText . The
content is not parsed in any way, however you may add transformers to manipulate the data within the pl ai nTe
xt as needed, or to create other additional fields.

For example:

<entity processor="Pl ai nText EntityProcessor” name="x" url="http://abc.conm a.txt"
dat aSour ce="dat a- sour ce- nane" >

<I-- copies the text to a field called "text' in Solr-->
<field colum="pl ai nText" name="text"/>
</entity>

Ensure that the dataSource is of type Dat aSour ce<Reader > (Fi | eDat aSour ce, URLDat aSour ce).

SolrEntityProcessor

Uses Solr instance as a datasource, see https://wiki.apache.org/solr/DatalmportHandler#SolrEntityProcessor

Transformers

Transformers manipulate the fields in a document returned by an entity. A transformer can create new fields or
modify existing ones. You must tell the entity which transformers your import operation will be using, by adding
an attribute containing a comma separated list to the <ent i t y> element.

<entity nanme="abcde" transforner="org.apache.solr...., ny.own.transfornmer,..." />

Specific transformation rules are then added to the attributes of a <f i el d> element, as shown in the examples
below. The transformers are applied in the order in which they are specified in the transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own custom
transformers, as described in the Solr Wiki (see http://wiki.apache.org/solr/DIHCustomTransformer). The
ScriptTransformer (described below) offers an alternative method for writing your own transformers.

Solr includes the following built-in transformers:

Transformer Name Use
ClobTransformer Used to create a String out of a Clob type in database.
DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.
LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a number.

RegexTransformer Use regular expressions to manipulate fields.

Apache Solr Reference Guide 5.5 219

https://wiki.apache.org/solr/DataImportHandler#SolrEntityProcessor
http://wiki.apache.org/solr/DIHCustomTransformer

ScriptTransformer Write transformers in Javascript or any other scripting language supported by
Java.

TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer

You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a character large
object: a collection of character data typically stored in a separate location that is referenced in the database.
See http://en.wikipedia.org/wiki/Character_large_object. Here's an example of invoking the ClobTransformer.

<entity name="e" transformer="C obTransforner" ...>
<field col um="hugeText Fi el d* clob="true" />

</entity>
The ClobTransformer accepts these attributes:

Attribute Description

clob Boolean value to signal if ClobTransformer should process this field or not. If this attribute is
omitted, then the corresponding field is not transformed.

sourceColName The source column to be used as input. If this is absent source and target are same

The DateFormatTransformer

This transformer converts dates from one format to another. This would be useful, for example, in a situation
where you wanted to convert a field with a fully specified date/time into a less precise date format, for use in
faceting.

DateFormatTransformer applies only on the fields with an attribute dat eTi neFor nat . Other fields are not
modified.

This transformer recognizes the following attributes:

Attribute Description

dateTimeFormat The format used for parsing this field. This must comply with the syntax of the Java
SimpleDateFormat class.

sourceColName The column on which the dateFormat is to be applied. If this is absent source and target
are same.

locale The locale to use for date transformations. If not specified, the ROOT locale will be used. It
must be specified as language-country. For example, en- US.

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity name="en" pk="id" transforner="DateFormatTransformer” ... >

<field colum="date" sourceCol Name="ful | date" dateTi neFormat="yyyy- M\W'/ >
</entity>

Apache Solr Reference Guide 5.5 220

http://en.wikipedia.org/wiki/Character_large_object
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

The HTMLStripTransformer

You can use this transformer to strip HTML out of a field. For example:

<entity nanme="e" transfornmer="HTM.StripTransforner"” ... >
<field colum="htm Text" stripHTM.="true" />

</entity>
There is one attribute for this transformer, st ri pHTM., which is a boolean value (true/false) to signal if the
HTMLStripTransformer should process the field or not.
The LogTransformer

You can use this transformer to log data to the console or log files. For example:

<entity ...
t ransf or mer =" LogTr ansf or ner"
| ogTenpl at e="The nane is ${e.nane}" |oglLevel ="debug">

</entity>
Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are applied on the
entity itself.
The NumberFormatTransformer

Use this transformer to parse a number from a string, converting it into the specified format, and optionally using
a different locale.

NumberFormatTransformer will be applied only to fields with an attribute f or nat St yl e.

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of (nunber | p
ercent | i nt eger| currency). This uses the semantics of the Java NumberFormat class.

sourceColName The column on which the NumberFormat is to be applied. This is attribute is absent. The
source column and the target column are the same.

locale The locale to be used for parsing the strings. If this is absent, the ROOT locale is used. It
must be specified as language-country. For example, en- US.

For example:

Apache Solr Reference Guide 5.5 221

<entity nane="en" pk="id" transforner="NunberFornmat Transforner" ...>

<I-- treat this field as UK pounds -->

<field nane="price_uk" colum="price" fornmatStyle="currency" |ocal e="en-UK"/>
</entity>

The RegexTransformer

The regex transformer helps in extracting or manipulating values from fields (from the source) using Regular
Expressions. The actual class name is or g. apache. sol r. handl er . dat ai nport . RegexTr ansf or ner . But
as it belongs to the default package the package-name can be omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description
regex The regular expression that is used to match against the column or sourceColName's
value(s). If replaceWith is absent, each regex group is taken as a value and a list of values
is returned.

sourceColName The column on which the regex is to be applied. If not present, then the source and target
are identical.

splitBy Used to split a string. It returns a list of values. note: this is a regular expression — it may
need to be escaped (e.g. via back-slashes)

groupNames A comma separated list of field column names, used where the regex contains groups and
each group is to be saved to a different field. If some groups are not to be named leave a
space between commas.

replaceWith Used along with regex . It is equivalent to the method new
String(<sourceCol Val >).replaceAl |l (<regex>, <replaceWth>).

Here is an example of configuring the regex transformer:

<entity nane="foo" transforner="RegexTransforner"
query="sel ect full_nane, enumilids fromfoo">
<field colum="full nane"/>
<field colum="firstNane" regex="M (\w)\b.*" sourceCol Nane="ful | _nane"/>
<field colum="1ast Nanme" regex="M.*?\b(\w*)" sourceCol Name="ful | _nanme"/ >

<!-- another way of doing the sanme -->

<field colum="full Name" regex="M(\w*)\b(.*)" groupNanes="firstNane, | ast Nane"/ >
<field colum="mail I d" splitBy="," sourceCol Name="enmilids"/>
</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The transformer
reads the field f ul | _nan®e from the resultset and transforms it to two new target fields, fi r st Nane and | ast Na
me. Even though the query returned only one column, f ul | _nan®, in the result set, the Solr document gets two
extra fields f i r st Name and | ast Namre which are "derived" fields. These new fields are only created if the
regexp matches.

Apache Solr Reference Guide 5.5 222

The emailids field in the table can be a comma-separated value. It ends up producing one or more email IDs,
and we expect the mai | | d to be a multivalued field in Solr.

Note that this transformer can either be used to split a string into tokens based on a splitBy pattern, or to perform
a string substitution as per replaceWith, or it can assign groups within a pattern to a list of groupNames. It
decides what it is to do based upon the above attributes spl i t By, r epl aceW t h and gr oupNanes which are
looked for in order. This first one found is acted upon and other unrelated attributes are ignored.

The ScriptTransformer

The script transformer allows arbitrary transformer functions to be written in any scripting language supported by
Java, such as Javascript, JRuby, Jython, Groovy, or BeanShell. Javascript is integrated into Java 7; you'll need
to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a Java Map<Stri ng, Qbj ect >, thus
permitting get , put, r enbve operations). Thus you can modify the value of an existing field or add new fields.
The return value of the function is the returned object.

The script is inserted into the DIH configuration file at the top level and is called once for each row.

Here is a simple example.

<dat aconfi g>

<I-- sinple script to generate a new row, converting a tenperature from Fahrenheit
to Centigrade -->

<scri pt ><! [CDATA]
function f2c(row {
var tenmpf, tenpc;
tempf = row.get('tenp_f');
if (tenpf !'= null) {
tenmpc = (tenpf - 32.0)*5.0/9.0;
row. put ('tenp_c', tenp_c);
}
return row
}
11>
</script>
<docunent >

<!-- the function is specified as an entity attribute -->
<entity name="el" pk="id" transforner="script:f2c" query="select * fromX"'>
</entity>
</ docunent >
</ dat aConfi g>

The TemplateTransformer

You can use the template transformer to construct or modify a field value, perhaps using the value of other fields.
You can insert extra text into the template.

Apache Solr Reference Guide 5.5 223

<entity nane="en" pk="id" transforner="Tenpl ateTransforner" ...>

<I-- generate a full address fromfields containing the conponent parts -->

<field colum="full _address" tenplate="%{en.street}, ${en.city}, ${en.zip}" />
</entity>

Special Commands for the Data Import Handler

You can pass special commands to the DIH by adding any of the variables listed below to any row returned by
any component:

Variable Description
$skipDoc Skip the current document; that is, do not add it to Solr. The value can be the string t ru
e| fal se.
$skipRow Skip the current row. The document will be added with rows from other entities. The

value can be the string t r ue| f al se

$docBoost Boost the current document. The boost value can be a number or the t oSt ri ng conve
rsion of a number.

$deleteDocByld Delete a document from Solr with this ID. The value has to be the uni queKey value of
the document.

$deleteDocByQuery Delete documents from Solr using this query. The value must be a Solr Query.

Updating Parts of Documents

Once you have indexed the content you need in your Solr index, you will want to start thinking about your
strategy for dealing with changes to those documents. Solr supports two approaches to updating documents that
have only partially changed.

The first is atomic updates. This approach allows changing only one or more fields of a document without having
to re-index the entire document.

The second approach is known as optimistic concurrency or optimistic locking. It is a feature of many NoSQL
databases, and allows conditional updating a document based on its version. This approach includes semantics
and rules for how to deal with version matches or mis-matches.

Atomic Updates and Optimistic Concurrency may be used as independent strategies for managing changes to
documents, or they may be combined: you can use optimistic concurrency to conditionally apply an atomic
update.

Atomic Updates

Solr supports several modifiers that atomically update values of a document. This allows updating only specific
fields, which can help speed indexing processes in an environment where speed of index additions is critical to
the application.

To use atomic updates, add a modifier to the field that needs to be updated. The content can be updated, added
to, or incrementally increased if a number.

Apache Solr Reference Guide 5.5 224

Modifier Usage

set Set or replace the field value(s) with the specified value(s), or remove the values if 'null’ or
empty list is specified as the new value.

May be specified as a single value, or as a list for multivalued fields

add Adds the specified values to a multivalued field.

May be specified as a single value, or as a list.

remove Removes (all occurrences of) the specified values from a multivalued field.

May be specified as a single value, or as a list.

removeregex Removes all occurrences of the specified regex from a multiValued field.

May be specified as a single value, or as a list.

inc Increments a numeric value by a specific amount.

Must be specified as a single numeric value.

1. The core functionality of atomically updating a document requires that all fields in your schema must be
configured as stored="true" except for fields which are <copyField/> destinations -- which must be
configured as stored="false". Atomic updates are applied to the document represented by the existing
stored field values. If <copyField/> destinations are configured as stored, then Solr will attempt to index
both the current value of the field as well as an additional copy from any source fields.

For example, if the following document exists in our collection:

{"id":"nmydoc",

"price": 10,

"popul arity":42,

"categories":["kids"],

"prono_ids":["al23x"],
"tags":["free_to_try","buy_now', "cl earance", "on_sal e"]

And we apply the following update command:

{"id":"mydoc",
"price":{"set":99},
"popul arity":{"inc": 20},
"categories":{"add":["toys", "ganes"]},
"prono_ids":{"renbve": "al23x"},
"tags":{"renove":["free_to_try","on_sale"]}

The resulting document in our collection will be:

Apache Solr Reference Guide 5.5 225

{"id":"mydoc",

"price": 99,

"popul arity":62,
"categories":["kids","toys", "ganes"],
"tags":["buy_now', "cl earance"]

Optimistic Concurrency

Optimistic Concurrency is a feature of Solr that can be used by client applications which update/replace
documents to ensure that the document they are replacing/updating has not been concurrently modified by
another client application. This feature works by requiring a _ver si on_ field on all documents in the index, and
comparing that to a _ver si on_ specified as part of the update command. By default, Solr's schema. xm includ
es a_versi on_ field, and this field is automatically added to each new document.

In general, using optimistic concurrency involves the following work flow:

1. Aclient reads a document. In Solr, one might retrieve the document with the / get handler to be sure to

have the latest version.
2. Aclient changes the document locally.
3. The client resubmits the changed document to Solr, for example, perhaps with the / updat e handler.

4. If there is a version conflict (HTTP error code 409), the client starts the process over.

When the client resubmits a changed document to Solr, the _ver si on_ can be included with the update to
invoke optimistic concurrency control. Specific semantics are used to define when the document should be
updated or when to report a conflict.

® |fthe contentin the _ver si on_ field is greater than '1' (i.e., '12345"), then the _ver si on_ in the
document must match the _ver si on_ in the index.

® |f the content in the _ver si on_ field is equal to '1', then the document must simply exist. In this case, no
version matching occurs, but if the document does not exist, the updates will be rejected.

® If the contentin the _ver si on_ field is less than 'O’ (i.e., '-1"), then the document must not exist. In this
case, ho version matching occurs, but if the document exists, the updates will be rejected.

® |f the contentin the _ver si on_ field is equal to '0', then it doesn't matter if the versions match or if the
document exists or not. If it exists, it will be overwritten; if it does not exist, it will be added.

If the document being updated does not include the _ver si on_ field, and atomic updates are not being used,
the document will be treated by normal Solr rules, which is usually to discard the previous version.

When using Optimistic Concurrency, clients can include an optional ver si ons=t r ue request parameter to
indicate that the new versions of the documents being added should be included in the response. This allows
clients to immediately know what the _ver si on__is of every documented added with out needing to make a

redundant / get request.

For example...

Apache Solr Reference Guide 5.5 226

$ curl -X POST -H ' Content-Type: application/json'

"http://1ocal host: 8983/ sol r/techproduct s/ updat e?versi ons=true' --data-binary
[{ "id" : "aaa" },
{ lli dll : n bbbll }] l

{"responseHeader": {"status": 0, "Qrli ne": 6},

"adds":["aaa", 1498562471222312960

"bbb", 1498562471225458688] }

$ curl -X POST -H ' Content-Type: application/json'

"http://1ocal host: 8983/ sol r/techproduct s/ update?_versi on_=999999&ver si ons=t r ue
--data-binary '

[{ "id" : "aaa",

"foo_s" : "update attenpt with wong existing version" }]

{"responseHeader": {"status": 409, "QTi ne": 3},

“error":{"msg":"version conflict for aaa expected=999999

act ual =1498562471222312960",

"code": 409}}
$ curl -X POST -H ' Content-Type: application/json'
"http://1ocal host: 8983/ sol r/techproducts/update?_version_=1498562471222312960&ver si o

ns=true&conmit=true' --data-binary
[{ "id" : "aaa",
"foo_s" : "update attenpt with correct existing version" }]

{"responseHeader": {"status":0,"Qrli ne": 5},
"adds":["aaa", 1498562624496861184] }
$ curl "http://1ocal host:8983/sol r/techproducts/query?g=*:*& | =id, _version_'

{
"responseHeader": {
"status":0,
"Qrine":5,
"parans": {
"fl":"id, _version_",
Uit}
"response": {"nunFound": 2, "start": 0, "docs": [
{
"id":"bbb",
" _version_":1498562471225458688},
{
"id":"aaa",
"_version_":1498562624496861184}]
1}

For more information, please also see Yonik Seeley's presentation on NoSQL features in Solr 4 from Apache
Lucene EuroCon 2012.

(¥ Power Tip
The versi on_ field is by default stored in the inverted index (i ndexed="t r ue"). However, for some
systems with a very large number of documents, the increase in FieldCache memory requirements may
be too costly. A solution can be to declare the _ver si on_ field as DocValues:

Sample field definition

<field nane="_version_" type="long" indexed="fal se" stored="true"
requi red="true" docVal ues="true"/>

Apache Solr Reference Guide 5.5 227

https://www.youtube.com/watch?v=WYVM6Wz-XTw

Document Centric Versioning Constraints

Optimistic Concurrency is extremely powerful, and works very efficiently because it uses an internally assigned,
globally unique values for the _ver si on_ field. However, In some situations users may want to configure their
own document specific version field, where the version values are assigned on a per-document basis by an
external system, and have Solr reject updates that attempt to replace a document with an "older" version. In
situations like this the DocBasedVer si onConst r ai nt sProcessor Fact ory can be useful.

The basic usage of DocBasedVer si onConst r ai nt sProcessor Fact ory is to configure itin sol r confi g. x
nm as part of the UpdateRequestProcessorChain and specify the name of your custom ver si onFi el d in your
schema that should be checked when validating updates:

<processor class="solr.DocBasedVersi onConstrai nt sProcessor Fact ory" >
<str name="versionFi el d">my_version_| </str>
</ processor >

Once configured, this update processor will reject (HTTP error code 409) any attempt to update an existing
document where the value of the ny_ver si on_| field in the "new" document is not greater then the value of

that field in the existing document.

1, versionField vs _version_
The _ver si on_ field used by Solr for its normal optimistic concurrency also has important semantics in
how updates are distributed to replicas in SolrCloud, and MUST be assigned internally by Solr. Users
can not re-purpose that field and specify it as the ver si onFi el d for use in the DocBasedVer si onCo
nstrai nt sProcessor Fact ory configuration.

DocBasedVer si onConst r ai nt sProcessor Fact or y supports two additional configuration params which are
optional:

® j gnor ed dUpdat es - A boolean option which defaults to f al se. If setto t r ue then instead of rejecting
updates where the ver si onFi el d is too low, the update will be silently ignored (and return a status 200
to the client).

® del et eVer si onPar am- A String parameter that can be specified to indicate that this processor should
also inspect Delete By Id commands. The value of this configuration option should be the name of a
request parameter that the processor will now consider mandatory for all attempts to Delete By Id, and
must be be used by clients to specify a value for the ver si onFi el d which is greater then the existing
value of the document to be deleted. When using this request param, any Delete By |ld command with a
high enough document version number to succeed will be internally converted into an Add Document
command that replaces the existing document with a new one which is empty except for the Unique Key
and ver si onFi el d to keeping a record of the deleted version so future Add Document commands will
fail if their "new" version is not high enough.

Please consult the processor javadocs and test configs for additional information and example usages.

De-Duplication

Preventing duplicate or near duplicate documents from entering an index or tagging documents with a
signature/fingerprint for duplicate field collapsing can be efficiently achieved with a low collision or fuzzy hash
algorithm. Solr natively supports de-duplication techniques of this type via the <Si gnat ur e> class and allows
for the easy addition of new hash/signature implementations. A Signature can be implemented several ways:

Apache Solr Reference Guide 5.5 228

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
http://wiki.apache.org/solr/UpdateRequestProcessor
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
https://svn.apache.org/viewvc/lucene/dev/trunk/solr/core/src/test-files/solr/collection1/conf/solrconfig-externalversionconstraint.xml?view=markup

Method Description
MD5Signature 128 bit hash used for exact duplicate detection.

Lookup3Signature 64 bit hash used for exact duplicate detection, much faster than MD5 and smaller to
index

TextProfileSignature = Fuzzy hashing implementation from nutch for near duplicate detection. It's tunable but
works best on longer text.

Other, more sophisticated algorithms for fuzzy/near hashing can be added later.

1. Adding in the de-duplication process will change the al | owDups setting so that it applies to an update
Term (with si gnat ur eFi el d in this case) rather than the unique field Term. Of course the si gnhat ur e
Fi el d could be the unique field, but generally you want the unique field to be unique. When a document
is added, a signature will automatically be generated and attached to the document in the specified si gn
atureFiel d.

Configuration Options

There are two places in Solr to configure de-duplication: in sol rconfi g. xm and in schema. xni .

Insol rconfig. xm

The Si gnat ur eUpdat ePr ocessor Fact or y has to be registered in sol r confi g. xm as part of an Update
Request Processor Chain, as in this example:

<updat eRequest Pr ocessor Chai n nane="dedupe" >
<processor class="solr.processor. Si gnatureUpdat eProcessor Fact ory" >
<bool name="enabl ed">true</ bool >
<str name="signatureFiel d">i d</str>
<bool nane="overw iteDupes">fal se</bool >
<str name="fiel ds">nane, features, cat</str>
<str nanme="si gnatured ass">sol r. processor. Lookup3Si gnat ure</str>
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory" />
<processor class="sol r. RunUpdat eProcessor Factory" />
</ updat eRequest Processor Chai n>

The Si gnat ur eUpdat ePr ocessor Fact or y takes several properties:

Parameter Default Description

signatureClass or g. apache. sol r. A Signature implementation for generating a signature hash. The
updat e. processo full classpath of the implementation must be specified. The available
r. Lookup3Si gnat options are described above, the associated classpaths to use are:

ure
® org. apache. sol r. updat e. processor. Lookup3Si gnat u

re

® org. apache. sol r. updat e. processor. MD5Si gnat ur e

® org. apache. sol r. updat e. process. Text Profi | eSi gha
ture

Apache Solr Reference Guide 5.5 229

http://wiki.apache.org/solr/TextProfileSignature

fields all fields The fields to use to generate the signature hash in a comma
separated list. By default, all fields on the document will be used.

signatureField signatureField The name of the field used to hold the fingerprint/signature. The
field should be defined in schema.xml.

enabled true Enable/disable de-duplication processing.

overwriteDupes true If true, when a document exists that already matches this signature,
it will be overwritten.

In schema. xn

If you are using a separate field for storing the signature you must have it indexed:

<field nane="si gnatureFi el d" type="string" stored="true" indexed="true"
mul ti Val ued="fal se" />

Be sure to change your update handlers to use the defined chain, as below:

<request Handl er name="/update" cl ass="sol r. Updat eRequest Handl er" >
<l st name="defaul ts">
<str name="updat e. chai n" >dedupe</str>
</lst>

</ request Handl er >

(This example assumes you have other sections of your request handler defined.)

@ The update processor can also be specified per request with a parameter of updat e. chai n=dedupe.

Detecting Languages During Indexing

Solr can identify languages and map text to language-specific fields during indexing using the | angi d UpdateRe
questProcessor. Solr supports two implementations of this feature:

® Tika's language detection feature: http://tika.apache.org/0.10/detection.html
® | angDetect language detection: http://code.google.com/p/language-detection/

You can see a comparison between the two implementations here: http://blog.mikemccandless.com/2011/10/acc
uracy-and-performance-of-googles.html. In general, the LangDetect implementation supports more languages
with higher performance.

For specific information on each of these language identification implementations, including a list of supported
languages for each, see the relevant project websites. For more information about the | angi d UpdateRequestP
rocessor, see the Solr wiki: http://wiki.apache.org/solr/LanguageDetection. For more information about language
analysis in Solr, see Language Analysis.

Configuring Language Detection

You can configure the | angi d UpdateRequestProcessor in sol r conf i g. xm . Both implementations take the
same parameters, which are described in the following section. At a minimum, you must specify the fields for

Apache Solr Reference Guide 5.5 230

http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection

language identification and a field for the resulting language code.

Configuring Tika Language Detection

Here is an example of a minimal Tika | angi d configuration in sol r confi g. xm :

<processor
cl ass="org. apache. sol r. updat e. processor . Ti kaLanguagel denti fi er Updat ePr ocessor Fact ory
">
<l st nanme="defaul ts">
<str name="langid.fl">title, subject,text, keywords</str>
<str name="|angi d. | angFi el d" >l anguage_s</str>
</[lst>
</ processor >

Configuring LangDetect Language Detection

Here is an example of a minimal LangDetect | angi d configuration in sol r confi g. xm :

<processor
cl ass="org. apache. sol r. updat e. processor. LangDet ect Languagel denti fi er Updat ePr ocessor F
actory">
<l st nanme="defaul ts">
<str name="langid.fl">title, subject,text, keywords</str>
<str name="|angi d. | angFi el d" >l anguage_s</str>
</l|st>
</ processor >

| angi d Parameters

As previously mentioned, both implementations of the | angi d UpdateRequestProcessor take the same

parameters.
Parameter Type Default Required Description

langid Boolean true no Enables and disables language
detection.

langid.fl string none yes A comma- or space-delimited list of fields
to be processed by | angi d.

langid.langField string none yes Specifies the field for the returned
language code.

langid.langsField multivalued none no Specifies the field for a list of returned

string language codes. If you use | angi d. map

. i ndi vi dual , each detected language
will be added to this field.

langid.overwrite Boolean false no Specifies whether the content of the | an

gFi el d and | angsFi el d fields will be
overwritten if they already contain
values.

Apache Solr Reference Guide 5.5 231

langid.lcmap

langid.threshold

langid.whitelist

langid.map

langid.map.fl

langid.map.keepOrig

langid.map.individual

langid.map.individual.fl

string

float

string

Boolean

string

Boolean

Boolean

string

Apache Solr Reference Guide 5.5

none

0.5

none

false

none

false

false

none

false

no

no

no

no

no

no

no

A space-separated list specifying colon
delimited language code mappings to
apply to the detected languages. For
example, you might use this to map
Chinese, Japanese, and Korean to a
common cj k code, and map both
American and British English to a single
en code by using | angi d. | cap=j a: c
jk zh:cjk ko:cjk en_GB: en
en_US: en. This affects both the values
put into the | angFi el d and | angsFi el
d fields, as well as the field suffixes when
using | angi d. map, unless overridden
by | angi d. map. | crmap

Specifies a threshold value between 0
and 1 that the language identification
score must reach before | angi d accept
s it. With longer text fields, a high
threshold such at 0.8 will give good
results. For shorter text fields, you may
need to lower the threshold for language
identification, though you will be risking
somewhat lower quality results. We
recommend experimenting with your
data to tune your results.

Specifies a list of allowed language
identification codes. Use this in
combination with | angi d. map to ensure
that you only index documents into fields
that are in your schema.

Enables field name mapping. If true, Solr
will map field names for all fields listed in
langid.fl.

A comma-separated list of fields for | an
gi d. map that is different than the fields
specified inl angi d. f1 .

If true, Solr will copy the field during the
field name mapping process, leaving the
original field in place.

If true, Solr will detect and map
languages for each field individually.

A comma-separated list of fields for use

with | angi d. map. i ndi vi dual thatis

different than the fields specified in | ang
id fl.

232

langid.fallbackFields

langid.fallback

langid.map.lcmap

langid.map.pattern

langid.map.replace

langid.enforceSchema

string

string

string

Java
regular
expression

Java
replace

Boolean

Content Streams

none

none

determined by
I angi d. | crmap

none

none

true

no

no

no

no

no

no

If no language is detected that meets the
I angi d. t hr eshol d score, or if the
detected language is not on the | angi d
. Whi t el i st, this field specifies
language codes to be used as fallback
values. If no appropriate fallback
languages are found, Solr will use the
language code specified in | angi d. f al
| back.

Specifies a language code to use if no
language is detected or specified in | an
gi d. fal | backFi el ds.

A space-separated list specifying colon
delimited language code mappings to
use when mapping field names. For
example, you might use this to make
Chinese, Japanese, and Korean
language fields use a common * _cj k su
ffix, and map both American and British
English fields to a single * _en by using

I angi d. map. | cmap=j a: cj k zh:cjk
ko:cjk en_GB:en en_US: en.

By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java regular
expression in this parameter.

By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java replace
in this parameter.

If false, the | angi d processor does not
validate field names against your
schema. This may be useful if you plan
to rename or delete fields later in the
UpdateChain.

When Solr RequestHandlers are accessed using path based URLSs, the Sol r Quer yRequest object containing
the parameters of the request may also contain a list of ContentStreams containing bulk data for the request.
(The name SolrQueryRequest is a bit misleading: it is involved in all requests, regardless of whether it is a query
request or an update request.)

Stream Sources

Currently RequestHandlers can get content streams in a variety of ways:

® For multipart file uploads, each file is passed as a stream.

® For POST requests where the content-type is not appl i cati on/ x- ww f or nt ur | encoded, the raw
POST body is passed as a stream. The full POST body is parsed as parameters and included in the Solr

Apache Solr Reference Guide 5.5

233

parameters.

® The contents of parameter st r eam body is passed as a stream.

® |f remote streaming is enabled and URL content is called for during request handling, the contents of each
stream url and stream fi | e parameters are fetched and passed as a stream.

By default, curl sends a cont ent Type="appl i cati on/ x- ww f or m ur | encoded" header. If you need to
test a SolrContentHeader content stream, you will need to set the content type with the "-H" flag.

RemoteStreaming

Remote streaming lets you send the contents of a URL as a stream to a given SolrRequestHandler. You could
use remote streaming to send a remote or local file to an update plugin. For convenience, remote streaming is
enabled in most of the example sol rconfi g. xm files included with Solr, however it is not recommended in a
production situation with out additional security between you and untrusted remote clients.

<!__ * k% % \,\ARNING***
The settings bel ow authorize Solr to fetch renote files, You
shoul d make sure your system has sonme authentication before
usi ng enabl eRenot eSt r eam ng="true"
-->

<request Par sers enabl eRenot eSt reani ng="true" />

The default behavior, when enabl eRenpt eSt r eam ng is not specified in sol r confi g. xm is to not allow
remote streaming (i.e., enabl eRenot eSt r eam ng="f al se").

1. If you enabl eRenpt eSt r eam ng="t rue" is used, be aware that this allows anyone to send a request
to any URL or local file. If DumpRequestHandler is enabled, it will allow anyone to view any file on your
system.

Debugging Requests

The example sol rconfi g. xm files include a "dump" RequestHandler:

<r equest Handl er name="/debug/ dunp" cl ass="sol r. DunpRequest Handl er" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type wt . This is a
useful tool to help understand what streams are available to the RequestHandlers.

UIMA Integration

You can integrate the Apache Unstructured Information Management Architecture (UIMA) with Solr. UIMA lets
you define custom pipelines of Analysis Engines that incrementally add metadata to your documents as
annotations.

For more information about Solr UIMA integration, see https://wiki.apache.org/solr/SolrUIMA.

Configuring UIMA

The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents being
indexed, sends them to a UIMA pipeline, and then returns the documents enriched with the specified metadata.
To configure UIMA for Solr, follow these steps:

Apache Solr Reference Guide 5.5 234

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

1. Copy sol r-ui ma- VERSI ON. j ar (under/ sol r- VERSI OV di st/) and its libraries (under cont ri b/ ui
ma/ | i b) to a Solr libraries directory, or set <l i b/ > tags in sol r confi g. xm appropriately to point to
those jar files:

<lib dir="../../contrib/uima/lib" />
<lib dir="../../dist/" regex="solr-uima-\d.*\.jar" />

2. Modify schema. xm , adding your desired metadata fields specifying proper values for type, indexed,
stored, and multiValued options. For example:

<field nane="I| anguage" type="string" indexed="true" stored="true"
requi red="fal se"/>

<field nane="concept" type="string" indexed="true" stored="true"
mul ti Val ued="true" required="fal se"/>

<field nane="sentence" type="text" indexed="true" stored="true"
mul ti Val ued="true" required="fal se" />

3. Add the following snippet to sol rconfi g. xm :

<updat eRequest Pr ocessor Chai n nane="ui ma" >
<processor
cl ass="org. apache. sol r. ui ma. processor . U MAUpdat eRequest Processor Fact ory" >
<l st name="ui maConfi g">
<l st nanme="runti nePar aneters">

<str name="keywor d_api key" >VALI D_ALCHEMYAPI _KEY</ st r >
<str name="concept _api key" >VALI D_ALCHEMYAPI _KEY</ st r >
<str name="|ang_api key" >VALI D_ALCHEMYAPI _KEY</str>
<str nanme="cat _api key" >VALI D_ALCHEMYAPI _KEY</ str>
<str name="entities_api key">VALI D_ALCHEMYAPI _KEY</ st r >
<str name="oc_|icensel D'>VALI D_OPENCALAI S_KEY</str >

</l|st>

<str
name="anal ysi séngi ne" >/ or g/ apache/ ui ma/ desc/ Over ri di ngPar ansExt Ser vi cesAE. xn <
/str>

<I-- Set to true if you want to continue indexing even if text

processing fails.
Default is false. That is, Solr throws RuntinmeException and

never indexed docunents entirely in your session. -->
<bool nane="ignoreErrors">true</bool >
<l-- This is optional. It is used for |ogging when text processing
fails.
If logField is not specified, uniqueKey will be used as | ogField.
<str name="| ogFi el d">i d</str>

-->
<l st name="anal yzeFi el ds" >
<bool nane="nerge" >fal se</bool >
<arr name="fiel ds">
<str>text</str>
</arr>
</l|st>
<l st name="fi el dvappi ngs" >
<l st name="type">
<str nanme="nane">or g. apache. ui ma. al cheny. ts. concept. Concept FS</ st r>
<l st name="mappi ng" >
<str name="feature">text</str>
<str name="fiel d">concept</str>
</lst>

Apache Solr Reference Guide 5.5 235

</[lst>
<l st name="type">
<str
name="nane" >or g. apache. ui ma. al cheny. ts. | anguage. LanguageFS</ str >
<l st nanme="nmappi ng" >
<str nanme="feature">l anguage</str>
<str name="fiel d">l anguage</str>
</l|st>
</[lst>
<l st name="type">
<str nanme="nane">or g. apache. ui ma. Sent enceAnnot ati on</str>
<l st name="mappi ng" >
<str nane="feature">coveredText</str>
<str nanme="fiel d">sentence</str>
</lst>
</l|st>
</[lst>
</lst>
</ processor >

Apache Solr Reference Guide 5.5 236

<processor class="sol r.LogUpdat eProcessor Factory" />
<processor class="solr.RunUpdat eProcessor Factory" />
</ updat eRequest Processor Chai n>

1. VALI D_ALCHEMYAPI _KEY is your AlchemyAPI Access Key. You need to register an AlchemyAPI
Access key to use AlchemyAPI services: http://www.alchemyapi.com/api/register.html.

VALI D_OPENCALAI S _KEY is your Calais Service Key. You need to register a Calais Service key
to use the Calais services: http://www.opencalais.com/apikey.

anal ysi sengi ne must contain an AE descriptor inside the specified path in the classpath.

anal yzeFi el ds must contain the input fields that need to be analyzed by UIMA. If ner ge=t r ue
then their content will be merged and analyzed only once.

Field mapping describes which features of which types should go in a field.

4. Inyour sol rconfi g. xm replace the existing default UpdateRequestHandler or create a new
UpdateRequestHandler:

<request Handl er nanme="/update" cl ass="sol r. Xm Updat eRequest Handl er" >
<l st name="defaul ts">
<str name="updat e. processor">ui ma</str>
</[lst>
</ request Handl er >

Once you are done with the configuration your documents will be automatically enriched with the specified fields
when you index them.

Apache Solr Reference Guide 5.5 237

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

Searching

This section describes how Solr works with search requests. It covers the following topics:
® Overview of Searching in Solr: An introduction to searching with Solr.

® Velocity Search Ul: A simple search Ul using the VelocityResponseWriter.
® Relevance: Conceptual information about understanding relevance in search results.

® Query Syntax and Parsing: A brief conceptual overview of query syntax and parsing. It also contains the
following sub-sections:

® Common Query Parameters: No matter the query parser, there are several parameters that are
common to all of them.

® The Standard Query Parser: Detailed information about the standard Lucene query parser.

® The DisMax Query Parser: Detailed information about Solr's DisMax query parser.

® The Extended DisMax Query Parser: Detailed information about Solr's Extended DisMax (eDisMax)
Query Parser.

® Function Queries: Detailed information about parameters for generating relevancy scores using
values from one or more numeric fields.
Local Parameters in Queries: How to add local arguments to queries.

® Other Parsers: More parsers designed for use in specific situations.

® Faceting: Detailed information about categorizing search results based on indexed terms.

® Highlighting: Detailed information about Solr's highlighting utilities. Sub-sections cover the different types
of highlighters:
® Standard Highlighter: Uses the most sophisticated and fine-grained query representation of the
three highlighters.
® FastVector Highlighter: Optimized for term vector options on fields, and good for large documents
and multiple languages.
® Postings Highlighter: Uses similar options as the FastVector highlighter, but is more compact and
efficient.

® Spell Checking: Detailed information about Solr's spelling checker.

® Query Re-Ranking: Detailed information about re-ranking top scoring documents from simple queries
using more complex scores.

® Transforming Result Documents: Detailed information about using Doc Tr ansf or ner s to add computed
information to individual documents

® Suggester: Detailed information about Solr's powerful autosuggest component.

® MoreLikeThis: Detailed information about Solr's similar results query component.

® Pagination of Results: Detailed information about fetching paginated results for display in a Ul, or for
fetching all documents matching a query.

® Result Grouping: Detailed information about grouping results based on common field values.

® Result Clustering: Detailed information about grouping search results based on cluster analysis applied to
text fields. A bit like "unsupervised" faceting.

® Spatial Search: How to use Solr's spatial search capabilities.

® The Terms Component: Detailed information about accessing indexed terms and the documents that
include them.

Apache Solr Reference Guide 5.5 238

® The Term Vector Component: How to get term information about specific documents.

® The Stats Component: How to return information from numeric fields within a document set.

® The Query Elevation Component: How to force documents to the top of the results for certain queries.
® Response Writers: Detailed information about configuring and using Solr's response writers.

® Near Real Time Searching: How to include documents in search results nearly immediately after they are
indexed.

RealTime Get: How to get the latest version of a document without opening a searcher.
Exporting Result Sets & Streaming Expressions: Functionality for streaming large amounts of data out of
Solr

Overview of Searching in Solr

The default query parser is

Solr offers arich, flexible set of features for search. To understand the extent of this flexibility, it's helpful to begin
with an overview of the steps and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a request handler. A request handler is a
Solr plug-in that defines the logic to be used when Solr processes a request. Solr supports a variety of request
handlers. Some are designed for processing search queries, while others manage tasks such as index
replication.

Search applications select a particular request handler by default. In addition, applications can be configured to
allow users to override the default selection in preference of a different request handler.

To process a search query, a request handler calls a query parser, which interprets the terms and parameters
of a query. Different query parsers support different syntax. Solr's default query parser is known as the Standard
Query Parser,or more commonly just the "lucene" query parser. Solr also includes the DisMaxquery parser, and
the Extended DisMax (eDisMax) query parser. The standard query parser's syntax allows for greater precision in
searches, but the DisMax query parser is much more tolerant of errors. The DisMax query parser is designed to
provide an experience similar to that of popular search engines such as Google, which rarely display syntax
errors to users. The Extended DisMax query parser is an improved version of DisMax that handles the full
Lucene query syntax while still tolerating syntax errors. It also includes several additional features.

In addition, there are common query parameters that are accepted by all query parsers.
Input to a query parser can include:

® search strings---that is, terms to search for in the index

® parameters for fine-tuning the query by increasing the importance of particular strings or fields, by
applying Boolean logic among the search terms, or by excluding content from the search results

® parameters for controlling the presentation of the query response, such as specifying the order in which
results are to be presented or limiting the response to particular fields of the search application's schema.

Search parameters may also specify a filter query. As part of a search response, a filter query runs a query
against the entire index and caches the results. Because Solr allocates a separate cache for filter queries, the
strategic use of filter queries can improve search performance. (Despite their similar names, query filters are not
related to analysis filters. Filter queries perform queries at search time against data already in the index, while
analysis filters, such as Tokenizers, parse content for indexing, following specified rules).

A search query can request that certain terms be highlighted in the search response; that is, the selected terms
will be displayed in colored boxes so that they "jump out" on the screen of search results. Highlighting can
make it easier to find relevant passages in long documents returned in a search. Solr supports multi-term
highlighting. Solr includes a rich set of search parameters for controlling how terms are highlighted.

Apache Solr Reference Guide 5.5 239

Search responses can also be configured to include snippets (document excerpts) featuring highlighted text.
Popular search engines such as Google and Yahoo! return snippets in their search results: 3-4 lines of text
offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping search
results to aid further exploration: faceting and clustering.

Faceting is the arrangement of search results into categories (which are based on indexed terms). Within each

category, Solr reports on the number of hits for relevant term, which is called a facet constraint. Faceting makes
it easy for users to explore search results on sites such as movie sites and product review sites, where there are
many categories and many items within a category.

The screen shot below shows an example of faceting from the CNET Web site (CBS Interactive Inc.) , which was
the first site to use Solr.

: Digital cameras The facet count or
Manufactureris a constraint count shows
facet a way of how many results
categorizing the Refine your results match each value
results
Munulur.lutar Hawlullun Loom ranga More
& magapbs & XX 54X (11) * LCD size
Canon, Sony, and : T [o e s
Mikon are o MBen 4 (14 T e
constraints, or » Ohmous 8 * Sil mage formal
facel values P —— * Maximum 5
oo all ¥
FOU selected: $400 - 3500 | D) SLR | rmave al

The breaderumb o

trail shows what 17 results //

constraints have
already been Show 10 || resulls parpage Son by Review dale | COMPARE SELECTED

applied and allows
for their remaoval

= Canon EOS Rabel X5 (zilver, with 18-58mm $489 to $699
lens) at 15 stores]

Faceting makes use of fields defined when the search applications were indexed. In the example above, these
fields include categories of information that are useful for describing digital cameras: manufacturer, resolution,
and zoom range.

Clustering groups search results by similarities discovered when a search is executed, rather than when content
is indexed. The results of clustering often lack the neat hierarchical organization found in faceted search results,
but clustering can be useful nonetheless. It can reveal unexpected commonalities among search results, and it
can help users rule out content that isn't pertinent to what they're really searching for.

Solr also supports a feature called MoreLikeThis, which enables users to submit new queries that focus on
particular terms returned in an earlier query. MoreLikeThis queries can make use of faceting or clustering to
provide additional aid to users.

A Solr component called a response writer manages the final presentation of the query response. Solr includes
a variety of response writers, including an XML Response Writer and a JSON Response Writer.

The diagram below summarizes some key elements of the search process.

Ylec!s a RequestHandler for a query using fselact (by default, the DisMax RequestHandler is usad)
Request

Handler defType: selects a query parser for the query
\ by detault, uses whatever has been configurad

T

for the RequestHandlar)

N

Apache Solr Reference Guide 5.5 240

https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-TheStandardXMLResponseWriter
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-JSONResponseWriter

Response \
Writer Query

Parser

wt: salacts aresponse writer for formatting
the query response

faq: filters the query by applying an additional query
to the Inital query's results: caches the results

qf: selactswhich fields to query
in the index (by dafault, all
fields are quarizd)

rows: specifies the

number of rows start: specifies an offset
to be displayed (by defaultd) into
atone time the query results where

the returned response
should begin

Velocity Search Ul

Solr includes a sample search Ul based on the VelocityResponseWriter (also known as Solritas) that

Index

demonstrates several useful features, such as searching, faceting, highlighting, autocomplete, and geospatial

searching.

When using the sanpl e_t echproducts_confi gs config set, you can access the Velocity sample Search Ul
here: http://1 ocal host: 8983/ sol r/t echproduct s/ br owse

«Wlé

Solr

Type of Search: [Simple | {Spatial | [Group By

Solr Admin

Field Facets

cat
electronics (12)
currency (4)
memory (3)
connector (2)
araphics card (2)
hard drive (2)
search (2)
software (2)
camera (1)

Find: Submit | Reset

Boost by Price

32 results found in 102 ms Page 1 of 4

Test with some GB18030 encoded characters More Like This
Id: GB18030TEST
Price: 0.0,USD

Features: No accents here ... iX2—NI8E ... This is a feature (translated) ... X{3X#2{RAHE ... This document is very shiny (translated)
In Stock: true

‘Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133 More Like This

copier (1) Id: SP2514N 7
electronics and c... (1) Price: 92.0,USD. ‘
elegtronics and ... (1) Features: 7200RPM, 8MB cache, IDE Ultra ATA-133 ... NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB) motor . £
multifunction pri... (1) Larger Map
music (1) In Stock: true
printer (1)
scanner (1)
missing (12) Maxtor DiamondMax 11 - hard drive - 500 GB - SATA-300 More Like This

manu_exact Id: 6H500FO
Apache Software F... (2) Price: 350.0,USD
Belkin (2)
Ganon Inc. (2) Features: SATA 3.0Gb/s, NCQ ... 8.5ms seek ... 16MB cache
Corsair Microsvst. (2) In Stock: true

The Velocity Search Ul

For more information about the Velocity Response Writer, see the Response Writer page.

Relevance

Relevance is the degree to which a query response satisfies a user who is searching for information.

The relevance of a query response depends on the context in which the query was performed. A single search

application may be used in different contexts by users with different needs and expectations. For example, a
search engine of climate data might be used by a university researcher studying long-term climate trends, a
farmer interested in calculating the likely date of the last frost of spring, a civil engineer interested in rainfall

patterns and the frequency of floods, and a college student planning a vacation to a region and wondering what

Apache Solr Reference Guide 5.5

241

https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-VelocityResponseWriter
http://localhost:8983/solr/techproducts/browse
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-VelocityResponseWriter

to pack. Because the motivations of these users vary, the relevance of any particular response to a query will
vary as well.

How comprehensive should query responses be? Like relevance in general, the answer to this question depends
on the context of a search. The cost of not finding a particular document in response to a query is high in some
contexts, such as a legal e-discovery search in response to a subpoena, and quite low in others, such as a
search for a cake recipe on a Web site with dozens or hundreds of cake recipes. When configuring Solr, you
should weigh comprehensiveness against other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to relevance:

® Precision is the percentage of documents in the returned results that are relevant.
® Recall is the percentage of relevant results returned out of all relevant results in the system. Obtaining
perfect recall is trivial: simply return every document in the collection for every query.

Returning to the examples above, it's important for an e-discovery search application to have 100% recall
returning all the documents that are relevant to a subpoena. It's far less important that a recipe application offer
this degree of precision, however. In some cases, returning too many results in casual contexts could overwhelm
users. In some contexts, returning fewer results that have a higher likelihood of relevance may be the best
approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and queries for a
collection of documents. A perfect system would have 100% precision and 100% recall for every user and every
query. In other words, it would retrieve all the relevant documents and nothing else. In practical terms, when
talking about precision and recall in real systems, it is common to focus on precision and recall at a certain
number of results, the most common (and useful) being ten results.

Through faceting, query filters, and other search components, a Solr application can be configured with the
flexibility to help users fine-tune their searches in order to return the most relevant results for users. That is, Solr
can be configured to balance precision and recall to meet the needs of a particular user community.

The configuration of a Solr application should take into account:

® the needs of the application's various users (which can include ease of use and speed of response, in
addition to strictly informational needs)

® the categories that are meaningful to these users in their various contexts (e.g., dates, product categories,
or regions)

® any inherent relevance of documents (e.g., it might make sense to ensure that an official product
description or FAQ is always returned near the top of the search results)

® whether or not the age of documents matters significantly (in some contexts, the most recent documents
might always be the most important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to sketch out the
types of responses you think the search application should return for sample queries. Once the application is up
and running, you can employ a series of testing methodologies, such as focus groups, in-house testing, TREC te
sts and A/B testing to fine tune the configuration of the application to best meet the needs of its users.

For more information about relevance, see Grant Ingersoll's tech article Debugging Search Application
Relevance Issues which is available on SearchHub.org.

Query Syntax and Parsing
Solr supports several query parsers, offering search application designers great flexibility in controlling how
queries are parsed.

This section explains how to specify the query parser to be used. It also describes the syntax and features
supported by the main query parsers included with Solr and describes some other parsers that may be useful for
particular situations. There are some query parameters common to all Solr parsers; these are discussed in the
section Common Query Parameters.

The parsers discussed in this Guide are:

Apache Solr Reference Guide 5.5 242

http://trec.nist.gov
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/

The Standard Query Parser

The DisMax Query Parser

The Extended DisMax Query Parser
Other Parsers

The query parser plugins are all subclasses of QParserPlugin. If you have custom parsing needs, you may want
to extend that class to create your own query parser.

For more detailed information about the many query parsers available in Solr, see https://wiki.apache.org/solr/So
IrQuerySyntax.

Common Query Parameters

The table below summarizes Solr's common query parameters, which are supported by the Standard, DisMax,
and eDisMax Request Handlers.

Parameter Description
defType Selects the query parser to be used to process the query.
sort Sorts the response to a query in either ascending or descending order based on the

response's score or another specified characteristic.

start Specifies an offset (by default, 0) into the responses at which Solr should begin displaying
content.

rows Controls how many rows of responses are displayed at a time (default value: 10)

fq Applies a filter query to the search results.

fl Limits the information included in a query response to a specified list of fields. The fields need

to either be st ored="t rue" or docVal ues="true"

debug Request additional debugging information in the response. Specifying the debug=t i m ng pa
rameter returns just the timing information; specifying the debug=r esul t s parameter returns
"explain” information for each of the documents returned; specifying the debug=query
par anet er returns all of the debug information.

explainOther Allows clients to specify a Lucene query to identify a set of documents. If non-blank, the
explain info of each document which matches this query, relative to the main query (specified
by the q parameter) will be returned along with the rest of the debugging information.

timeAllowed Defines the time allowed for the query to be processed. If the time elapses before the query
response is complete, partial information may be returned.

omitHeader Excludes the header from the returned results, if set to true. The header contains information
about the request, such as the time the request took to complete. The default is false.

wit Specifies the Response Writer to be used to format the query response.

logParamsList By default, Solr logs all parameters. Set this parameter to restrict which parameters are
logged. Valid entries are the parameters to be logged, separated by commas (i.e., | ogPar am
sLi st =par aml, par an). An empty list will log no parameters, so if logging all parameters
is desired, do not define this additional parameter at all.

The following sections describe these parameters in detail.

The def Type Parameter

Apache Solr Reference Guide 5.5 243

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/search/QParserPlugin.html
https://wiki.apache.org/solr/SolrQuerySyntax
https://wiki.apache.org/solr/SolrQuerySyntax

The defType parameter selects the query parser that Solr should use to process the main query parameter (q) in
the request. For example:

def Type=di smax

If no defType param is specified, then by default, the The Standard Query Parser is used. (eg: def Type=l ucen
e)

The sort Parameter

The sort parameter arranges search results in either ascending (asc) or descending (desc) order. The
parameter can be used with either numerical or alphabetical content. The directions can be entered in either all
lowercase or all uppercase letters (i.e., both asc or ASC).

Solr can sort query responses according to document scores or the value of any field with a single value that is
either indexed or uses DocValues (that is, any field whose attributes in scherma. xm include nul ti Val ued="
al se" and either docVal ues="true" ori ndexed="true" —if the field does not have DocValues enabled,
the indexed terms are used to build them on the fly at runtime), provided that:

® the field is non-tokenized (that is, the field has no analyzer and its contents have been parsed into tokens,
which would make the sorting inconsistent), or

* the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate searching, use the <cop
yFi el d> directive in the schema. xni file to clone the field. Then search on the field and sort on its clone.

The table explains how Solr responds to various settings of the sort parameter.

Example Result

If the sort parameter is omitted, sorting is performed as though the parameter were set to

score desc.
score desc Sorts in descending order from the highest score to the lowest score.
price asc Sorts in ascending order of the price field

inStock desc, Sorts by the contents of the i nSt ock field in descending order, then within those results sorts
price asc in ascending order by the contents of the price field.
Regarding the sort parameter's arguments:

® A sort ordering must include a field name (or scor e as a pseudo field), followed by whitespace (escaped
as + or %20 in URL strings), followed by a sort direction (asc or desc).

® Multiple sort orderings can be separated by a comma, using this syntax: sort =<fi el d
nane>+<di recti on>, <fi el d nane>+<direction>], ...
®* When more than one sort criteria is provided, the second entry will only be used if the first entry
results in a tie. If there is a third entry, it will only be used if the first AND second entries are tied.
This pattern continues with further entries.

The st art Parameter

When specified, the st art parameter specifies an offset into a query's result set and instructs Solr to begin
displaying results from this offset.

The default value is "0". In other words, by default, Solr returns results without an offset, beginning where the

Apache Solr Reference Guide 5.5 244

results themselves begin.

Setting the st art parameter to some other number, such as 3, causes Solr to skip over the preceding records
and start at the document identified by the offset.

You can use the st art parameter this way for paging. For example, if the r ows parameter is set to 10, you
could display three successive pages of results by setting start to 0, then re-issuing the same query and setting
start to 10, then issuing the query again and setting start to 20.

The r ows Parameter

You can use the rows parameter to paginate results from a query. The parameter specifies the maximum
number of documents from the complete result set that Solr should return to the client at one time.

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a query.

The f q (Filter Query) Parameter

The f q parameter defines a query that can be used to restrict the superset of documents that can be returned,
without influencing score. It can be very useful for speeding up complex queries, since the queries specified with
f q are cached independently of the main query. When a later query uses the same filter, there's a cache hit, and

filter results are returned quickly from the cache.
When using the f g parameter, keep in mind the following:

® The f g parameter can be specified multiple times in a query. Documents will only be included in the result
if they are in the intersection of the document sets resulting from each instance of the parameter. In the
example below, only documents which have a popularity greater then 10 and have a section of 0 will
match.

fq=popul arity:[10 TO *] & g=section: 0

® Filter queries can involve complicated Boolean queries. The above example could also be written as a
single f q with two mandatory clauses like so:

fq=+popul arity:[10 TO *] +section:0

® The document sets from each filter query are cached independently. Thus, concerning the previous
examples: use a single f g containing two mandatory clauses if those clauses appear together often, and
use two separate f q parameters if they are relatively independent. (To learn about tuning cache sizes and
making sure a filter cache actually exists, see The Well-Configured Solr Instance.)

® As with all parameters: special characters in an URL need to be properly escaped and encoded as hex
values. Online tools are available to help you with URL-encoding. For example: http://meyerweb.com/eric/t
ools/dencoder/.

The f | (Field List) Parameter

The f | parameter limits the information included in a query response to a specified list of fields. The fields need
to either be st or ed="t rue" or docVal ues="true".

The field list can be specified as a space-separated or comma-separated list of field names. The string "score"
can be used to indicate that the score of each document for the particular query should be returned as a field.

Apache Solr Reference Guide 5.5 245

http://meyerweb.com/eric/tools/dencoder/
http://meyerweb.com/eric/tools/dencoder/

The wildcard character "* " selects all the fields in the document which are either st or ed="t rue" or docVal u
es="true" and useDocVal uesAsSt or ed="true" (which is the default when docValues are enabled). You
can also add psuedo-fields, functions and transformers to the field list request.

This table shows some basic examples of how to use f | :

Field List Result
id name price Return only the id, name, and price fields.
id,name,price Return only the id, name, and price fields.

id name, price Return only the id, name, and price fields.
id score Return the id field and the score.

* Return all the st or ed fields in each document, as well as any docVal ues fields that have
useDocVal uesAsSt or ed="t rue" . This is the default value of the fl parameter.

* score Return all the fields in each document, along with each field's score.

* dv_field name Return all the st or ed fields in each document, and any docVal ues fields that have useD
ocVal uesAsSt or ed="t r ue" and the docValues from dv_field_name even if it has useDo
cVal uesAsSt ored="f al se"

Function Values

Functions can be computed for each document in the result and returned as a psuedo-field:

fl=id,title,product(price, popularity)

Document Transformers

Document Transformers can be used to modify the information returned about each documents in the results of
a query:

fl=id,title,[explain]

Field Name Aliases

You can change the key used to in the response for a field, function, or transformer by prefixing it with a " di spl
ayNane: ". For example:

fl=id,sales_price:price,secret_sauce: prod(price, popularity),why_score:[explain
styl e=nl]

Apache Solr Reference Guide 5.5 246

"response": {"nunfFound": 2,"start": 0, "docs": [
{
"id":"6H500F0",
"secret_sauce":2100. 0,
"sal es_price":350.0,
"why_score":{
"mat ch":true,
"val ue": 1. 052226,
"description":"weight(features:cache in 2) [DefaultSimlarity], result
of : ",
"details":[{

The debug Parameter

The debug parameter can be specified multiple times and supports the following arguments:

®* debug=query: return debug information about the query only.

debug=ti m ng: return debug information about how long the query took to process.

debug=r esul t s: return debug information about the score results (also known as "explain™).

® By default, score explanations are returned as large string values, using newlines and tab indenting

for structure & readability, but an additional debug. expl ai n. st ruct ur ed=t r ue parameter may
be specified to return this information as nested data structures native to the response format
requested by wt .

debug=al | : return all available debug information about the request request. (alternatively usage: debug

=true)

For backwards compatibility with older versions of Solr, debugQuer y=t r ue may instead be specified as an
alternative way to indicate debug=al |

The default behavior is not to include debugging information.

The expl ai nQt her Parameter

The expl ai nQt her parameter specifies a Lucene query in order to identify a set of documents. If this
parameter is included and is set to a non-blank value, the query will return debugging information, along with the
"explain info" of each document that matches the Lucene query, relative to the main query (which is specified by
the g parameter). For example:

g=supervil | i ans&lebugQuer y=on&expl ai nQt her =i d: j ugger naut

The query above allows you to examine the scoring explain info of the top matching documents, compare it to
the explain info for documents matching i d: j ugger naut , and determine why the rankings are not as you
expect.

The default value of this parameter is blank, which causes no extra "explain info" to be returned.

Theti neAl | owed Parameter

This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If this time
expires before the search is complete, any partial results will be returned.

Apache Solr Reference Guide 5.5 247

The om t Header Parameter

This parameter may be set to either true or false.

If set to true, this parameter excludes the header from the returned results. The header contains information
about the request, such as the time it took to complete. The default value for this parameter is false.

The wt Parameter

The wt parameter selects the Response Writer that Solr should use to format the query's response. For detailed
descriptions of Response Writers, see Response Writers.

The cache=f al se Parameter

Solr caches the results of all queries and filter queries by default. To disable result caching, set the cache=f al s
e parameter.

You can also use the cost option to control the order in which non-cached filter queries are evaluated. This
allows you to order less expensive non-cached filters before expensive non-cached filters.

For very high cost filters, if cache=f al se and cost >=100 and the query implements the Post Fi | t er interfac
e, a Collector will be requested from that query and used to filter documents after they have matched the main
query and all other filter queries. There can be multiple post filters; they are also ordered by cost.

For example:
/1 normal function range query used as a filter, all nmatching docunents

/'l generated up front and cached
fq={!frange | =10 u=100} nul (popul arity, price)

/1 function range query run in parallel with the main query like a traditional
/1 lucene filter
fq={!frange | =10 u=100 cache=fal se} mul (popul arity, price)

/1 function range query checked after each docunent that already natches the query
/1 and all other filters. Good for really expensive function queries
fq={!frange | =10 u=100 cache=fal se cost =100} nul (popul arity, price)

The | ogPar ansLi st Parameter

By default, Solr logs all parameters of requests. From version 4.7, set this parameter to restrict which parameters
of a request are logged. This may help control logging to only those parameters considered important to your
organization.

For example, you could define this like:
| ogPar ansLi st =q, fq
And only the 'q' and 'fq' parameters will be logged.

If no parameters should be logged, you can send | ogPar ansLi st as empty (i.e., | ogPar ansLi st =).

(-}) This parameter does not only apply to query requests, but to any kind of request to Solr.

Apache Solr Reference Guide 5.5 248

The Standard Query Parser

Solr's default Query Parser is also known as the "l ucene" parser.

The key advantage of the standard query parser is that it supports a robust and fairly intuitive syntax allowing

you to create a variety of structured queries. The largest disadvantage is that it's very intolerant of syntax errors,

as compared with something like the DisMax query parser which is designed to throw as few errors as possible.
Topics covered in this section:

Standard Query Parser Parameters

The Standard Query Parser's Response

Specifying Terms for the Standard Query Parser

Specifying Fields in a Query to the Standard Query Parser

Boolean Operators Supported by the Standard Query Parser

Grouping Terms to Form Sub-Queries

Comments

Differences between Lucene Query Parser and the Solr Standard Query Parser

Related Topics

Standard Query Parser Parameters

In addition to the Common Query Parameters, Faceting Parameters, Highlighting Parameters, and MoreLikeThis
Parameters, the standard query parser supports the parameters described in the table below.

Parameter Description
q Defines a query using standard query syntax. This parameter is mandatory.
g.op Specifies the default operator for query expressions, overriding the default operator specified in

the schema. xnl file. Possible values are "AND" or "OR".

df Specifies a default field, overriding the definition of a default field in the schema. xmi file.

Default parameter values are specified in sol r confi g. xm , or overridden by query-time values in the request.

The Standard Query Parser’'s Response

By default, the response from the standard query parser contains one <r esul t > block, which is unnamed. If the
debug parameter is used, then an additional <I st > block will be returned, using the name "debug". This will
contain useful debugging info, including the original query string, the parsed query string, and explain info for
each document in the <result> block. If the expl ai nQt her parameter is also used, then additional explain info

will be provided for all the documents matching that query.

Sample Responses

This section presents examples of responses from the standard query parser.

The URL below submits a simple query and requests the XML Response Writer to use indentation to make the
XML response more readable.

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?g=i d: SP2514N

Results:

Apache Solr Reference Guide 5.5 249

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThedebugParameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-TheexplainOtherParameter

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<r esponseHeader ><st at us>0</ st at us><QTi ne>1</ QTi ne></ r esponseHeader >
<result nunfFound="1" start="0">
<doc>
<arr name="cat"><str>el ectroni cs</str><str>hard drive</str></arr>
<arr nane="features"><str>7200RPM 8MB cache, IDE Utra ATA-133</str>
<str>Noi seGuard, SilentSeek technol ogy, Fluid Dynam c Bearing (FDB)
notor </ str></arr>
<str name="id">SP2514N</str>
<bool nane="inStock">true</ bool >
<str nanme="nmanu">Sansung El ectronics Co. Ltd.</str>
<str nanme="nane">Sansung Spi nPoi nt P120 SP2514N - hard drive - 250 GB -
ATA- 133</str>
<i nt name="popul arity">6</int>
<fl oat name="price">92. 0</fl oat >
<str name="sku">SP2514N</str>
</ doc>
</result>
</ response>

Here's an example of a query with a limited field list.

http://1ocal host: 8983/ sol r/techproducts/sel ect ?2q=i d: SP2514N&f | =i d+nane

Results:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r esponse>
<r esponseHeader ><st at us>0</ st at us><QTi me>2</ QTi me></ r esponseHeader >
<result nunfFound="1" start="0">
<doc>
<str nane="id">SP2514N</ st r>
<str nanme="nane">Sansung Spi nPoi nt P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
</ doc>
</result>
</ response>

Specifying Terms for the Standard Query Parser

A query to the standard query parser is broken up into terms and operators. There are two types of terms: single
terms and phrases.

® A single term is a single word such as "test" or "hello”
® A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as described
below).

1. Itis important that the analyzer used for queries parses terms and phrases in a way that is consistent
with the way the analyzer used for indexing parses terms and phrases; otherwise, searches may
produce unexpected results.

Apache Solr Reference Guide 5.5 250

Term Modifiers

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches. These modifiers
include wildcard characters, characters for making a search "fuzzy" or more general, and so on. The sections
below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single terms.
Wildcard characters can be applied to single terms, but not to search phrases.

Wildcard Search Type Special Example
Character
Single character (matches a single ? The search string t e?t would match both test
character) and text.
Multiple characters (matches zero or more * The wildcard search:

sequential characters)
tes*

would match test, testing, and tester.

You can also use wildcard characters in the
middle of a term. For example:

te*t
would match test and text.
*est

would match pest and test.

Fuzzy Searches

Solr's standard query parser supports fuzzy searches based on the Damerau-Levenshtein Distance or Edit
Distance algorithm. Fuzzy searches discover terms that are similar to a specified term without necessarily being
an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end of a single-word term. For example,
to search for a term similar in spelling to "roam," use the fuzzy search:

roam-
This search will match terms like roams, foam, & foams. It will also match the word "roam" itself.

An optional distance parameter specifies the maximum number of edits allowed, between 0 and 2, defaulting to
2. For example:

roam-1

This will match terms like roams & foam - but not foams since it has an edit distance of "2".

1. In many cases, stemming (reducing terms to a common stem) can produce similar effects to fuzzy
searches and wildcard searches.

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

Apache Solr Reference Guide 5.5 251

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a search phrase. For
example, to search for a "apache" and "jakarta" within 10 words of each other in a document, use the search:

"j akarta apache"~10

The distance referred to here is the number of term movements needed to match the specified phrase. In the
example above, if "apache" and "jakarta" were 10 spaces apatrt in a field, but "apache" appeared before "jakarta”,
more than 10 term movements would be required to move the terms together and position "apache" to the right
of "jakarta" with a space in between.

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower bound). The
query matches documents whose values for the specified field or fields fall within the range. Range queries can
be inclusive or exclusive of the upper and lower bounds. Sorting is done lexicographically, except on numeric
fields. For example, the range query below matches all documents whose nod_dat e field has a value between

20020101 and 20030101, inclusive.
nod_dat e: [20020101 TO 20030101]

Range queries are not limited to date fields or even numerical fields. You could also use range queries with
non-date fields:

title: {A da TO Carnen}
This will find all documents whose titles are between Aida and Carmen, but not including Aida and Carmen.
The brackets around a query determine its inclusiveness.

® Square brackets [] denote an inclusive range query that matches values including the upper and lower
bound.

® Curly brackets { } denote an exclusive range query that matches values between the upper and lower
bounds, but excluding the upper and lower bounds themselves.

® You can mix these types so one end of the range is inclusive and the other is exclusive. Here's an
example: count: {1 TO 10]

Boosting a Term with #

Lucene/Solr provides the relevance level of matching documents based on the terms found. To boost a term use
the caret symbol * with a boost factor (a number) at the end of the term you are searching. The higher the boost
factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if you are
searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding the * symbol
along with the boost factor immediately after the term. For example, you could type:

j akart a®4 apache

This will make documents with the term jakarta appear more relevant. You can also boost Phrase Terms as in
the example:

"jakarta apache"”4 "Apache Lucene"
By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1 (for example, it
could be 0.2).

Constant Score with A=

Constant score queries are created with <query_cl ause>"=<scor e>, which sets the entire clause to the
specified score for any documents matching that clause. This is desirable when you only care about matches for
a particular clause and don't want other relevancy factors such as term frequency (the number of times the term

Apache Solr Reference Guide 5.5 252

appears in the field) or inverse document frequency (a measure across the whole index for how rare a term is in
a field).

Example:

(description:blue OR col or:blue)”=1.0 text:shoes

Specifying Fields in a Query to the Standard Query Parser

Data indexed in Solr is organized in fields, which are defined in the Solr schema. xm file. Searches can take
advantage of fields to add precision to queries. For example, you can search for a term only in a specific field,
such as a title field.

The schema. xn file defines one field as a default field. If you do not specify a field in a query, Solr searches
only the default field. Alternatively, you can specify a different field or a combination of fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching for within the
field.

For example, suppose an index contains two fields, title and text,and that text is the default field. If you want to
find a document called "The Right Way" which contains the text "don't go this way," you could include either of
the following terms in your search query:

title:"The Ri ght Way" AND text:go
title:"Do it right" AND go
Since text is the default field, the field indicator is not required; hence the second query above omits it.

The field is only valid for the term that it directly precedes, sothe querytitle: Do it ri ght will find only "Do"
in the title field. It will find "it" and "right" in the default field (in this case the text field).

Boolean Operators Supported by the Standard Query Parser
Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of specific
terms or conditions in fields in order to match documents. The table below summarizes the Boolean operators

supported by the standard query parser.

Boolean Alternative Description
Operator Symbol

AND && Requires both terms on either side of the Boolean operator to be present for a
match.
NOT ! Requires that the following term not be present.
OR |] Requires that either term (or both terms) be present for a match.
i Requires that the following term be present.

- Prohibits the following term (that is, matches on fields or documents that do not
include that term). The - operator is functionally similar to the Boolean operator ! .
Because it's used by popular search engines such as Google, it may be more
familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, "+", OR, NOT and
"- " as Boolean operators.

1. When specifying Boolean operators with keywords such as AND or NOT, the keywords must appear in

Apache Solr Reference Guide 5.5 253

all uppercase.

() The standard query parser supports all the Boolean operators listed in the table above. The DisMax
query parser supports only + and - .

The OR operator is the default conjunction operator. This means that if there is no Boolean operator between
two terms, the OR operator is used. The OR operator links two terms and finds a matching document if either of
the terms exist in a document. This is equivalent to a union using sets. The symbol || can be used in place of the
word OR.

In the schema. xm file, you can specify which symbols can take the place of Boolean operators such as OR. To
search for documents that contain either "jakarta apache" or just "jakarta," use the query:

"jakarta apache" jakarta
or

"jakarta apache"” OR jakarta

The Boolean Operator +

The + symbol (also known as the "required” operator) requires that the term after the + symbol exist somewhere
in a field in at least one document in order for the query to return a match.

For example, to search for documents that must contain "jakarta" and that may or may not contain "lucene," use
the following query:

+j akarta | ucene

(D This operator is supported by both the standard query parser and the DisMax query parser.

The Boolean Operator AND (&&)

The AND operator matches documents where both terms exist anywhere in the text of a single document. This is
equivalent to an intersection using sets. The symbol && can be used in place of the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the following queries:
"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT (!)

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a difference using
sets. The symbol ! can be used in place of the word NOT.

The following queries search for documents that contain the phrase "jakarta apache" but do not contain the
phrase "Apache Lucene":

"jakarta apache" NOT "Apache Lucene"
"jakarta apache" ! "Apache Lucene"
The Boolean Operator -

The - symbol or "prohibit" operator excludes documents that contain the term after the - symbol.

For example, to search for documents that contain “jakarta apache" but not "Apache Lucene," use the following

Apache Solr Reference Guide 5.5 254

query:

"jakarta apache" -"Apache Lucene"

Escaping Special Characters

Solr gives the following characters special meaning when they appear in a query:
+-&& IO ~* 21

To make Solr interpret any of these characters literally, rather as a special character, precede the character with
a backslash character \. For example, to search for (1+1):2 without having Solr interpret the plus sign and
parentheses as special characters for formulating a sub-query with two terms, escape the characters by
preceding each one with a backslash:

V(1 +1\)\ ;2

Grouping Terms to Form Sub-Queries

Lucene/Solr supports using parentheses to group clauses to form sub-queries. This can be very useful if you
want to control the Boolean logic for a query.

The query below searches for either "jakarta” or "apache" and "website":
(jakarta OR apache) AND website
This adds precision to the query, requiring that the term "website" exist, along with either term "jakarta" and

"apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses within
parentheses. For example, the query below searches for a title field that contains both the word "return” and the
phrase "pink panther":

title: (+return +"pink panther")

Comments

C-Style comments are supported in query strings.
Example:

"jakarta apache" /* this is a comment in the niddle of a normal query string */ OR
j akarta

Comments may be nested.

Differences between Lucene Query Parser and the Solr Standard Query Parser

Solr's standard query parser differs from the Lucene Query Parser in the following ways:

®* A *may be used for either or both endpoints to specify an open-ended range query
® field:[* TO 100] finds all field values less than or equal to 100
® field:[100 TO *] finds all field values greater than or equal to 100
® field:[* TO *] matches all documents with the field
® Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
® -inStock: fal se finds all field values where inStock is not false

Apache Solr Reference Guide 5.5 255

® -field:[* TO *] finds all documents without a value for field
® A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it includes
parentheses, as shown in the second example below:
¢ val _:nyfield
¢ val _:"recip(rord(nyfield),1,2,3)"
® Support for using any type of query parser as a nested clause.
® inStock:true OR {!dismax gf='"name manu' v='ipod'}
® Support for a special filter(...) syntaxto indicate that some query clauses should be cached in the
filter cache (as a constant score boolean query). This allows sub-queries to be cached and re-used in
other queries.
For example i nSt ock: t r ue will be cached and re-used in all three of the queries below:
® g=features:songs OR filter(inStock:true)
® g=+manu: Appl e +filter(inStock:true)
® g=+manu: Appl e & fq=i nStock:true
This can even be used to cache individual clauses of complex filter queries. In the first query below, 3
items will be added to the filter cache (the top level f g and both filter(...) clauses) and in the
second query, there will be 2 cache hits, and one new cache insertion (for the new top level f q):
® g=features:songs & fg=+filter(inStock:true) +filter(price:[* TO 100])
® g=manu: Apple & fg=-filter(inStock:true) -filter(price:[* TO 100])
® Range queries ("[a TO z]"), prefix queries ("a*"), and wildcard queries ("a*b") are constant-scoring (all
matching documents get an equal score). The scoring factors TF, IDF, index boost, and "coord" are not
used. There is no limitation on the number of terms that match (as there was in past versions of Lucene).

Specifying Dates and Times

Queries against fields using the Tr i eDat eFi el d type (typically range queries) should use the appropriate date
syntax:

timestanp:[* TO NOW

createdate: [1976-03-06T23: 59: 59. 999Z TO *]

createdate: [1995-12-31T23: 59: 59. 999Z TO 2007-03- 06T00: 00: 00Z]

pubdat e: [NOW 1YEAR/ DAY TO NOW DAY+1DAY]

createdate: [1976-03-06T23: 59: 59. 999Z TO 1976-03- 06T23: 59: 59. 999Z+1YEAR]
createdate: [1976- 03- 06T23: 59: 59. 9992/ YEAR TO 1976- 03- 06T23: 59: 59. 9997]

Related Topics

® [ocal Parameters in Queries
® Other Parsers

The DisMax Query Parser

The DisMax query parser is designed to process simple phrases (without complex syntax) entered by users and
to search for individual terms across several fields using different weighting (boosts) based on the significance of
each field. Additional options enable users to influence the score based on rules specific to each use case
(independent of user input).

In general, the DisMax query parser's interface is more like that of Google than the interface of the 'standard’ Solr
request handler. This similarity makes DisMax the appropriate query parser for many consumer applications. It
accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser syntax. As in
Lucene, quotes can be used to group phrases, and +/- can be used to denote mandatory and optional clauses.
All other Lucene query parser special characters (except AND and OR) are escaped to simplify the user
experience. The DisMax query parser takes responsibility for building a good query from the user's input using

Apache Solr Reference Guide 5.5 256

Boolean clauses containing DisMax queries across fields and boosts specified by the user. It also lets the Solr
administrator provide additional boosting queries, boosting functions, and filtering queries to artificially affect the
outcome of all searches. These options can all be specified as default parameters for the handler in the sol r co
nfi g. xm file or overridden in the Solr query URL.

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum Disjunction. Here's a
definition of a Maximum Disjunction or "DisMax" query:

A query that generates the union of documents produced by its subqueries, and that scores each
document with the maximum score for that document as produced by any subquery, plus a tie
breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was primarily
designed to be easy to use and to accept almost any input without returning an error.

DisMax Parameters

In addition to the common request parameter, highlighting parameters, and simple facet parameters, the DisMax
query parser supports the parameters described below. Like the standard query parser, the DisMax query parser
allows default parameter values to be specified in sol r confi g. xm , or overridden by query-time values in the

request.

Parameter Description

q Defines the raw input strings for the query.

g.alt Calls the standard query parser and defines query input strings, when the q parameter is not
used.

gf Query Fields: specifies the fields in the index on which to perform the query. If absent, defaults to
df .

mm Minimum "Should" Match: specifies a minimum number of clauses that must match in a query. If
no 'mm' parameter is specified in the query, or as a default in sol r confi g. xm , the effective
value of the q. op parameter (either in the query, as a default in sol r confi g. xm , or from the
‘defaultOperator’ option in schema. xm) is used to influence the behavior. If q. op is effectively
AND'ed, then mm=100%; if g. op is OR'ed, then mm=1. Users who want to force the legacy
behavior should set a default value for the ‘'mm' parameter in their sol rconfi g. xm file. Users
should add this as a configured default for their request handlers. This parameter tolerates
miscellaneous white spaces in expressions (e.g., " 3 < -25% 10 < -3\n", " \n-25%n
", " \An3\n ").

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the g parameter
appear in close proximity.

ps Phrase Slop: specifies the number of positions two terms can be apart in order to match the
specified phrase.

gs Query Phrase Slop: specifies the number of positions two terms can be apart in order to match
the specified phrase. Used specifically with the gf parameter.

tie Tie Breaker: specifies a float value (which should be something much less than 1) to use as
tiebreaker in DisMax queries.

bq Boost Query: specifies a factor by which a term or phrase should be "boosted" in importance

when considering a match.

Apache Solr Reference Guide 5.5 257

bf Boost Functions: specifies functions to be applied to boosts. (See for details about function
queries.)

The sections below explain these parameters in detail.

The g Parameter

The g parameter defines the main "query" constituting the essence of the search. The parameter supports raw
input strings provided by users with no special escaping. The + and - characters are treated as "mandatory" and
"prohibited" modifiers for terms. Text wrapped in balanced quote characters (for example, "San Jose") is treated
as a phrase. Any query containing an odd number of quote characters is evaluated as if there were no quote
characters at all.

1. The g parameter does not support wildcard characters such as *.

The q. al t Parameter

If specified, the g. al t parameter defines a query (which by default will be parsed using standard query parsing
syntax) when the main q parameter is not specified or is blank. The g. al t parameter comes in handy when you
need something like a query to match all documents (don't forget & ows=0 for that one!) in order to get
collection-wide faceting counts.

The qf (Query Fields) Parameter

The gf parameter introduces a list of fields, each of which is assigned a boost factor to increase or decrease that
particular field's importance in the query. For example, the query below:

gf="fiel done”2.3 fieldTwo fiel dThree”0. 4"

assigns f i el dOne a boost of 2.3, leaves f i el dTwo with the default boost (because no boost factor is
specified), and f i el dThr ee a boost of 0.4. These boost factors make matches in fi el dOne much more
significant than matches in f i el dTwo, which in turn are much more significant than matches in fi el dThr ee.

The mrm(Minimum Should Match) Parameter

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited, and "optional”
(also known as "should" clauses). By default, all words or phrases specified in the g parameter are treated as
"optional” clauses unless they are preceded by a "+" or a "-". When dealing with these "optional” clauses, the nm
parameter makes it possible to say that a certain minimum number of those clauses must match. The DisMax
query parser offers great flexibility in how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.
Syntax Example Description

Positive integer 3 Defines the minimum number of clauses that must match, regardless of
how many clauses there are in total.

Negative integer -2 Sets the minimum number of matching clauses to the total number of
optional clauses, minus this value.

Percentage 75% Sets the minimum number of matching clauses to this percentage of the

total number of optional clauses. The number computed from the
percentage is rounded down and used as the minimum.

Apache Solr Reference Guide 5.5 258

Negative percentage -25% Indicates that this percent of the total number of optional clauses can be
missing. The number computed from the percentage is rounded down,
before being subtracted from the total to determine the minimum number.

An expression 3<90% Defines a conditional expression indicating that if the number of optional
beginning with a clauses is equal to (or less than) the integer, they are all required, but if
positive integer it's greater than the integer, the specification applies. In this example: if
followed by a > or < there are 1 to 3 clauses they are all required, but for 4 or more clauses
sign and another only 90% are required.

value

Multiple conditional 2<-25% Defines multiple conditions, each one being valid only for numbers
expressions involving 9<-3 greater than the one before it. In the example at left, if there are 1 or 2

> or < signs clauses, then both are required. If there are 3-9 clauses all but 25% are

required. If there are more then 9 clauses, all but three are required.

When specifying nmvalues, keep in mind the following:

®* When dealing with percentages, negative values can be used to get different behavior in edge cases. 75%
and -25% mean the same thing when dealing with 4 clauses, but when dealing with 5 clauses 75% means
3 are required, but -25% means 4 are required.

® |f the calculations based on the parameter arguments determine that no optional clauses are needed, the
usual rules about Boolean queries still apply at search time. (That is, a Boolean query containing no
required clauses must still match at least one optional clause).

* No matter what number the calculation arrives at, Solr will never use a value greater than the number of
optional clauses, or a value less than 1. In other words, no matter how low or how high the calculated
result, the minimum number of required matches will never be less than 1 or greater than the number of
clauses.

®* When searching across multiple fields that are configured with different query analyzers, the number of
optional clauses may differ between the fields. In such a case, the value specified by mm applies to the
maximum number of optional clauses. For example, if a query clause is treated as stopword for one of the
fields, the number of optional clauses for that field will be smaller than for the other fields. A query with
such a stopword clause would not return a match in that field if mm is set to 100% because the removed
clause does not count as matched.

The default value of mmis 100% (meaning that all clauses must match).

The pf (Phrase Fields) Parameter

Once the list of matching documents has been identified using the f q and qf parameters, the pf parameter can
be used to "boost" the score of documents in cases where all of the terms in the q parameter appear in close
proximity.

The format is the same as that used by the qf parameter: a list of fields and "boosts" to associate with each of
them when making phrase queries out of the entire g parameter.

The ps (Phrase Slop) Parameter

The ps parameter specifies the amount of "phrase slop” to apply to queries specified with the pf parameter.
Phrase slop is the number of positions one token needs to be moved in relation to another token in order to
match a phrase specified in a query.

The gs (Query Phrase Slop) Parameter

The gs parameter specifies the amount of slop permitted on phrase queries explicitly included in the user's query
string with the gf parameter. As explained above, slop refers to the number of positions one token needs to be
moved in relation to another token in order to match a phrase specified in a query.

Apache Solr Reference Guide 5.5 259

Theti e (Tie Breaker) Parameter

The t i e parameter specifies a float value (which should be something much less than 1) to use as tiebreaker in
DisMax queries.

When a term from the user's input is tested against multiple fields, more than one field may match. If so, each
field will generate a different score based on how common that word is in that field (for each document relative to
all other documents). The t i e parameter lets you control how much the final score of the query will be
influenced by the scores of the lower scoring fields compared to the highest scoring field.

A value of "0.0" makes the query a pure "disjunction max query": that is, only the maximum scoring subquery
contributes to the final score. A value of "1.0" makes the query a pure "disjunction sum query" where it doesn't
matter what the maximum scoring sub query is, because the final score will be the sum of the subquery scores.
Typically a low value, such as 0.1, is useful.

The bg (Boost Query) Parameter

The bg parameter specifies an additional, optional, query clause that will be added to the user's main query to
influence the score. For example, if you wanted to add a relevancy boost for recent documents:

g=cheese
bg=dat e: [NOW DAY- 1YEAR TO NOW DAY]

You can specify multiple bq parameters. If you want your query to be parsed as separate clauses with separate
boosts, use multiple bg parameters.

The bf (Boost Functions) Parameter

The bf parameter specifies functions (with optional boosts) that will be used to construct FunctionQueries which
will be added to the user's main query as optional clauses that will influence the score. Any function supported
natively by Solr can be used, along with a boost value. For example:

recip(rord(nyfield),1,2,3)"1.5

Specifying functions with the bf parameter is essentially just shorthand for using the bg param combined with the
{!func} parser.

For example, if you want to show the most recent documents first, you could use either of the following:

bf =reci p(rord(creationbDate), 1, 1000, 1000)
...0r. ..
bg={!func}recip(rord(creationbate), 1, 1000, 1000)

Examples of Queries Submitted to the DisMax Query Parser

All of the sample URLSs in this section assume you are running Solr's "techproducts" example:

bin/solr -e techproducts

Normal results for the word "video" using the StandardRequestHandler with the default search field:
http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?2g=vi deo&f | =name+scor e

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and cat fields all
with varying boosts designed to ensure that "better" matches appear first, specifically: documents which match

Apache Solr Reference Guide 5.5 260

on the name and cat fields get higher scores.
http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&g=vi deo
Note that this instance is also configured with a default field list, which can be overridden in the URL.

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&q=vi deo&f | =*, scor
e

You can also override which fields are searched on and how much boost each field gets.

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&q=vi deo&qf =f eat ur
es”20. O+t ext 0. 3

You can boost results that have a field that matches a specific value.

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&q=vi deo&bq=cat : e
ectroni cs”"5.0

Another instance of the handler is registered using the gt "instock” and has slightly different configuration
options, notably: a filter for (you guessed it) i nSt ock: t rue) .

http://1 ocal host: 8983/ sol r/t echproduct s/ sel ect ?def Type=di smax&qg=vi deo&f | =nane, s
core, i nStock

http://1 ocal host: 8983/ sol r/t echproduct s/ sel ect ?def Type=di smax&q=vi deo&qt =i nst oc
k&f | =nane, scor e, i nSt ock

One of the other really cool features in this handler is robust support for specifying the
"BooleanQuery.minimumNumberShouldMatch" you want to be used based on how many terms are in your user's
query. These allows flexibility for typos and partial matches. For the dismax handler, one and two word queries
require that all of the optional clauses match, but for three to five word queries one missing word is allowed.

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&qg=bel ki n+i pod

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&q=bel ki n+i pod+gi b
beri sh

http://1 ocal host: 8983/ sol r/t echproduct s/ sel ect ?def Type=di smax&qg=bel ki n+i pod+app
l e

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed query, and the
score explanations for each document.

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&q=bel ki n+i pod+gi b
beri sh&debugQuery=t rue

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect ?def Type=di smax&q=vi deo+car d&debu
gQuery=true

The Extended DisMax Query Parser

The Extended DisMax (eDisMax) query parser is an improved version of the DisMax query parser. In addition to
supporting all the DisMax query parser parameters, Extended Dismax:

supports the full Lucene query parser syntax.

supports queries such as AND, OR, NOT, -, and +.

treats "and" and "or" as "AND" and "OR" in Lucene syntax mode.

respects the 'magic field' names _val _and _query_. These are not a real fields in schema. xni , but if
used it helps do special things (like a function query in the case of _val _ or a nested query in the case of
_query). If _val isusedinaterm or phrase query, the value is parsed as a function.

® includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-, and phrase
queries are still supported in this mode.

Apache Solr Reference Guide 5.5 261

® improves proximity boosting by using word shingles; you do not need the query to match all words in the
document before proximity boosting is applied.

® includes advanced stopword handling: stopwords are not required in the mandatory part of the query but
are still used in the proximity boosting part. If a query consists of all stopwords, such as "to be or not to
be", then all words are required.

® includes improved boost function: in Extended DisMax, the boost function is a multiplier rather than an
addend, improving your boost results; the additive boost functions of DisMax (bf and bq) are also
supported.

® supports pure negative nested queries: queries such as +f oo (- f 0o) will match all documents.

® |ets you specify which fields the end user is allowed to query, and to disallow direct fielded searches.

Extended DisMax Parameters

In addition to all the DisMax parameters, Extended DisMax includes these query parameters:

The boost Parameter

A multivalued list of strings parsed as queries with scores multiplied by the score from the main query for all
matching documents. This parameter is shorthand for wrapping the query produced by eDisMax using the Boos
t QPar ser Pl ugi n

The | ower caseQper at or s Parameter

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as operators "AND" and
IIORII.

The ps Parameter

Default amount of slop on phrase queries built with pf , pf 2 and/or pf 3 fields (affects boosting).

The pf 2 Parameter
A multivalued list of fields with optional weights, based on pairs of word shingles.

The ps2 Parameter

This is similar to ps but overrides the slop factor used for pf 2. If not specified, ps is used.

The pf 3 Parameter

A multivalued list of fields with optional weights, based on triplets of word shingles. Similar to pf , except that
instead of building a phrase per field out of all the words in the input, it builds a set of phrases for each field out
of each triplet of word shingles.

The ps3 Parameter

This is similar to ps but overrides the slop factor used for pf 3. If not specified, ps is used.

The st opwor ds Parameter

A Boolean parameter indicating if the St opFi | t er Fact or y configured in the query analyzer should be
respected when parsing the query: if it is false, then the St opFi | t er Fact ory in the query analyzer is ignored.

The uf Parameter

Specifies which schema fields the end user is allowed to explicitly query. This parameter supports wildcards. The

Apache Solr Reference Guide 5.5 262

https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser#TheDisMaxQueryParser-DisMaxParameters

default is to allow all fields, equivalent to uf =*. To allow only title field, use uf =t i t | e. To allow title and all
fields ending with _s, use uf =ti tl e, *_s. To allow all fields except title, use uf =*-ti t | e. To disallow all
fielded searches, use uf =-*.

Field aliasing using per-field gf overrides

Per-field overrides of the gf parameter may be specified to provide 1-to-many aliasing from field names specified
in the query string, to field names used in the underlying query. By default, no aliasing is used and field names
specified in the query string are treated as literal field names in the index.

Examples of Queries Submitted to the Extended DisMax Query Parser

All of the sample URLs in this section assume you are running Solr's "t echpr oduct s" example:

bin/solr -e techproducts

Boost the result of the query term "hello” based on the document's popularity:

http://1ocal host: 8983/ sol r/techproducts/sel ect ?2def Type=edi smax&g=hel | 0&pf =t ext &qf =t e
xt &oost =popul arity

Search for iPods OR video:

http://1ocal host: 8983/ sol r/techproducts/sel ect ?2def Type=edi smax&q=i pod+COR+vi deo

Search across multiple fields, specifying (via boosts) how important each field is relative each other:

http://1ocal host: 8983/ sol r/techproducts/sel ect 2g=vi deo&def Type=edi smax&qf =f eat ur es”"2
0. O+t ext 0. 3

You can boost results that have a field that matches a specific value:

http://1ocal host: 8983/ sol r/techproducts/sel ect 2g=vi deo&def Type=edi smax&qf =f eat ur es”"2
0. O+t ext 0. 3&bqg=cat : el ectroni cs*5.0

Using the "mm" param, 1 and 2 word queries require that all of the optional clauses match, but for queries with
three or more clauses one missing clause is allowed:

http://1 ocal host: 8983/ sol r/techproduct s/ sel ect 2q=bel ki n+i pod&def Type=edi smax&mm=2
http://1ocal host: 8983/ sol r/techproducts/sel ect 2q=bel ki n+i pod+gi bberi sh&def Type=edi sm
ax&mm=2

http://1ocal host: 8983/ sol r/techproducts/sel ect ?g=bel ki n+i pod+appl e&def Type=edi smax&m
m=2

In the example below, we see a per-field override of the qf parameter being used to alias "name" in the query
string to either the "l ast _name" and "fi r st _nane" fields:

def Type=edi smax

g=sysadm n nane: M ke

gf=title text last_name first_name
f.nane. qf =l ast _nane first_nanme

Apache Solr Reference Guide 5.5 263

Using negative boost

Negative query boosts have been supported at the "Query" object level for a long time (resulting in negative
scores for matching documents). Now the QueryParsers have been updated to handle this too.

Using ‘slop’

Di smax and Edi smax can run queries against all query fields, and also run a query in the form of a phrase
against the phrase fields. (This will work only for boosting documents, not actually for matching.) However, that
phrase query can have a 'slop,' which is the distance between the terms of the query while still considering it a
phrase match. For example:

g=f oo bar

gf =fi el d175 fiel d2710
pf=fiel d1750 fiel d2720
def Type=di smax

With these parameters, the Dismax Query Parser generates a query that looks something like this:

(+(fieldl:foo”5 OR field2:foo”10) AND (fieldl:bar”5 OR fiel d2: bar”10))

But it also generates another query that will only be used for boosting results:

fieldl:"foo bar""50 OR field2:"foo bar"”"20
Thus, any document t