SO

Apache Solr Reference Guide

Covering Apache Solr 5.5

Li censed to the Apache Software Foundati on (ASF) under one
or nore contributor |icense agreenments. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You nay obtain a copy of the License at

http://ww. apache. org/li censes/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing,
software distributed under the License is distributed on an
"AS |S" BASI S, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing perm ssions and linmtations
under the License.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation. Apache Lucene, Apache
Solr and their respective logos are trademarks of the Apache Software Foundation. Please see the Apache
Trademark Policy for more information.

Fonts used in the Apache Solr Reference Guide include Raleway, licensed under the SIL Open Font License, 1.1.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/foundation/marks/
http://www.apache.org/foundation/marks/
https://www.theleagueofmoveabletype.com/raleway
http://scripts.sil.org/OFL

Apache Solr Reference Guide

This reference guide describes Apache Solr, the open source solution for search. You can download Apache
Solr from the Solr website at http://lucene.apache.org/solr/.

This Guide contains the following sections:

Getting Started: This section guides you through the installation and setup of Solr.

Using the Solr Administration User Interface: This section introduces the Solr Web-based user interface.
From your browser you can view configuration files, submit queries, view logfile settings and Java environment
settings, and monitor and control distributed configurations.

Documents, Fields, and Schema Design: This section describes how Solr organizes its data for indexing. It
explains how a Solr schema defines the fields and field types which Solr uses to organize data within the
document files it indexes.

Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares text for indexing
and searching. Analyzers parse text and produce a stream of tokens, lexical units used for indexing and
searching. Tokenizers break field data down into tokens. Filters perform other transformational or selective work
on token streams.

Indexing and Basic Data Operations: This section describes the indexing process and basic index operations,
such as commit, optimize, and rollback.

Searching: This section presents an overview of the search process in Solr. It describes the main components
used in searches, including request handlers, query parsers, and response writers. It lists the query parameters
that can be passed to Solr, and it describes features such as boosting and faceting, which can be used to
fine-tune search results.

The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It begins with an
overview of the sol r confi g. xm file, then tells you how to configure cores with sol r. xm , how to configure
the Lucene index writer, and more.

Managing Solr: This section discusses important topics for running and monitoring Solr. Other topics include
how to back up a Solr instance, and how to run Solr with Java Management Extensions (JMX).

SolrCloud: This section describes the newest and most exciting of Solr's new features, SolrCloud, which
provides comprehensive distributed capabilities.

Legacy Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a large index
into sections called shards, which are then distributed across multiple servers, or by replicating a single index
across multiple services.

Client APIs: This section tells you how to access Solr through various client APIs, including JavaScript, JSON,
and Ruby.

Apache Solr Reference Guide 5.5 2

http://lucene.apache.org/solr/

About This Guide

This guide describes all of the important features and functions of Apache Solr. It is free to download from http://|
ucene.apache.org/solr/.

Designed to provide high-level documentation, this guide is intended to be more encyclopedic and less of a
cookbook. It is structured to address a broad spectrum of needs, ranging from new developers getting started to
well-experienced developers extending their application or troubleshooting. It will be of use at any point in the
application life cycle, for whenever you need authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that you can read
XML. It does not assume that you are a Java programmer, although knowledge of Java is helpful when working
directly with Lucene or when developing custom extensions to a Lucene/Solr installation.

Special Inline Notes
Special notes are included throughout these pages.

Note Type Look & Description

Information) . . .
() Notes with a blue background are used for information that is important for you to know.

Notes
1. Yellow notes are further clarifications of important points to keep in mind while using
Solr.
Tip : .
@ Notes with a green background are Helpful Tips.
Warning

G) Notes with a red background are warning messages.

Hosts and Port Examples

The default port when running Solr is 8983. The samples, URLs and screenshots in this guide may show
different ports, because the port number that Solr uses is configurable. If you have not customized your
installation of Solr, please make sure that you use port 8983 when following the examples, or configure your own
installation to use the port numbers shown in the examples. For information about configuring port numbers, see
Managing Solr.

Similarly, URL examples use 'localhost' throughout; if you are accessing Solr from a location remote to the server
hosting Solr, replace 'localhost’ with the proper domain or IP where Solr is running.

Paths

Path information is given relative to sol r . home, which is the location under the main Solr installation where
Solr's collections and their conf and dat a directories are stored. When running the various examples

Apache Solr Reference Guide 5.5 3

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

mentioned through out this tutorial (i.e., bi n/ sol r -e techproducts) the sol r. home will be a sub directory
of exanpl e/ created for you automatically.

Apache Solr Reference Guide 5.5 4

Getting Started

Solr makes it easy for programmers to develop sophisticated, high-performance search applications with
advanced features such as faceting (arranging search results in columns with numerical counts of key terms).
Solr builds on another open source search technology: Lucene, a Java library that provides indexing and search
technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities. Both Solr
and Lucene are managed by the Apache Software Foundation (www.apache.org).

The Lucene search library currently ranks among the top 15 open source projects and is one of the top 5 Apache
projects, with installations at over 4,000 companies. Lucene/Solr downloads have grown nearly ten times over
the past three years, with a current run-rate of over 6,000 downloads a day. The Solr search server, which
provides application builders a ready-to-use search platform on top of the Lucene search library, is the fastest
growing Lucene sub-project. Apache Lucene/Solr offers an attractive alternative to the proprietary licensed
search and discovery software vendors.

This section helps you get Solr up and running quickly, and introduces you to the basic Solr architecture and
features. It covers the following topics:

Installing Solr: A walkthrough of the Solr installation process.

Running Solr: An introduction to running Solr. Includes information on starting up the servers, adding documents,
and running queries.

A Quick Overview: A high-level overview of how Solr works.
A Step Closer: An introduction to Solr's home directory and configuration options.

Solr Start Script Reference: a complete reference of all of the commands and options available with the bin/solr
script.

Installing Solr

This section describes how to install Solr. You can install Solr in any system where a suitable Java Runtime
Environment (JRE) is available, as detailed below. Currently this includes Linux, OS X, and Microsoft Windows.
The instructions in this section should work for any platform, with a few exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.7 or higher. At a command line, check your Java
version like this:

$ java -version

java version "1.8.0_60"

Java(TM SE Runtime Environnent (build 1.8.0_60-b27)

Java Hot Spot (TM 64-Bit Server VM (build 25.60-b23, m xed node)

The exact output will vary, but you need to make sure you meet the minimum version requirement. We also
recommend choosing a version that is not end-of-life from its vendor. If you don't have the required version, or if
the java command is not found, download and install the latest version from Oracle at http://www.oracle.com/tec
hnetwork/java/javase/downloads/index.html.

Installing Solr

Apache Solr Reference Guide 5.5 5

http://www.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Solr is available from the Solr website at http://lucene.apache.org/solr/.

For Linux/Unix/OSX systems, download the . t gz file. For Microsoft Windows systems, download the . zi p file.
When getting started, all you need to do is extract the Solr distribution archive to a directory of your choosing.
When you're ready to setup Solr for a production environment, please refer to the instructions provided on the Ta
king Solr to Production page. To keep things simple for now, extract the Solr distribution archive to your local
home directory, for instance on Linux, do:

$ cd ~/
$ tar zxf solr-5.0.0.tgz

Once extracted, you are now ready to run Solr using the instructions provided in the Running Solr section.

Running Solr

This section describes how to run Solr with an example schema, how to add documents, and how to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running bi n/ sol r from the Solr directory.
$ bin/solr start

If you are running Windows, you can start Solr by running bi n\ sol r. cnd instead.
bin\solr.cnd start

This will start Solr in the background, listening on port 8983.

When you start Solr in the background, the script will wait to make sure Solr starts correctly before returning to
the command line prompt.

The bi n/ sol r and bi n\ sol r. cnd scripts allow you to customize how you start Solr. Let's work through a few
examples of using the bi n/ sol r script (if you're running Solr on Windows, the bi n\ sol r. cnd works the same
as what is shown in the examples below):

Solr Script Options

The bi n/ sol r script has several options.

Script Help

To see how to use the bi n/ sol r script, execute:

$ bin/solr -help

For specific usage instructions for the start command, do:

$ bin/solr start -help

Apache Solr Reference Guide 5.5 6

http://lucene.apache.org/solr/

Start Solr in the Foreground

Since Solr is a server, it is more common to run it in the background, especially on Unix/Linux. However, to start
Solr in the foreground, simply do:

$ bin/solr start -f

If you are running Windows, you can run:

bin\solr.cnd start -f

Start Solr with a Different Port

To change the port Solr listens on, you can use the - p parameter when starting, such as:

$ bin/solr start -p 8984

Stop Solr

When running Solr in the foreground (using -f), then you can stop it using Ct r | - c. However, when running in the
background, you should use the stop command, such as:

$ bin/solr stop -p 8983

The stop command requires you to specify the port Solr is listening on or you can use the - al | parameter to
stop all running Solr instances.

Start Solr with a Specific Example Configuration

Solr also provides a number of useful examples to help you learn about key features. You can launch the
examples using the - e flag. For instance, to launch the "techproducts” example, you would do:

$ bin/solr -e techproducts

Currently, the available examples you can run are: techproducts, dih, schemaless, and cloud. See the section Ru
nning with Example Configurations for details on each example.

() Getting Started with SolrCloud
Running the ¢l oud example starts Solr in SolrCloud mode. For more information on starting Solr in
cloud mode, see the section Getting Started with SolrCloud.

Check if Solr is Running
If you're not sure if Solr is running locally, you can use the status command:

$ bin/solr status

This will search for running Solr instances on your computer and then gather basic information about them, such
as the version and memory usage.

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

Apache Solr Reference Guide 5.5 7

https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference#SolrStartScriptReference-RunningwithExampleConfigurations
https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference#SolrStartScriptReference-RunningwithExampleConfigurations

http://1l ocal host: 8983/ sol r/

E ; LI"",’# = Instance System o
o prnsesse Physical Memory
& Dashboard =1 Versions

() Logging " solr-spec 5.0.0

F . solr-impl 5.0.0-SNAPSHOT 1650195 - anshumgupta - 2015-01-09 13:41:02
2F Core Admin Swap Space
7 lucene-spec 5.0.0
Java Properties
lucene-impl 5.0.0-SNAPSHOT 1650195 - anshumgupta - 2015-01-07 15:00:12
Thread Dump
- File Descriptor Count
_ JVM 8 JVM-Memory
" Runtime Oracle Corporation Java HotSpot(TM) 64-Bit Server VM (1.8.0_20 25.20-b23)
[Processors 8
& Args -DSTOP.KEY=solrrocks

-Djava.net.preferlPv4Stack=true

-Dlogaj.confi jon=file:/Users/ workspace/branch_5x/solr/example/...
-Dsolr.solr.home=/Users/anshumgupta/workspace/branch_5x/solr/example/techpro...

-XX:+CMSParallelRemarkEnabled

-XX:+ParallelRefProcEnabled

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your port number
and try again.

Create a Core

If you did not start Solr with an example configuration, you would need to create a core in order to be able to
index and search. You can do so by running:

$ bin/solr create -c <name>
This will create a core that uses a data-driven schema which tries to guess the correct field type when you add
documents to the index.

To see all available options for creating a new core, execute:

$ bin/solr create -help

Add Documents

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is structured
(more on the schema later), but without documents there is nothing to find. Solr needs input before it can do
much.

You may want to add a few sample documents before trying to index your own content. The Solr installation
comes with different types of example documents located under the sub-directories of the exanpl e/ directory of
your installation.

In the bi n/ directory is the post script, a command line tool which can be used to index different types of

Apache Solr Reference Guide 5.5 8

documents. Do not worry too much about the details for now. The Indexing and Basic Data Operations section
has all the details on indexing.

To see some information about the usage of bi n/ post, use the - hel p option. Windows users, see the section
for Post Tool on Windows.

bi n/ post can post various types of content to Solr, including files in Solr's native XML and JSON formats, CSV
files, a directory tree of rich documents, or even a simple short web crawl. See the examples at the end of
“bin/post -help” for various commands to easily get started posting your content into Solr.

Go ahead and add all the documents in some example XML files:

$ bin/post -c gettingstarted exanpl e/ exanpl edocs/*. xmi

Si npl ePost Tool version 5.0.0

Posting files to [base] url http://1ocal host: 8983/ solr/gettingstarted/ update...
Entering auto node. File endings considered are

xm , j son, csv, pdf, doc, docx, ppt, ppt X, x| s, xl sx, odt, odp, ods, ott,otp,ots,rtf, htmhtnm,txt
, 1 og

POSTi ng file gb18030-exanpl e.xm (application/xm) to [base]

POSTing file hd.xm (application/xm) to [base]

POSTing file ipod other.xm (application/xm) to [base]

POSTing file ipod_video.xm (application/xm) to [base]

POSTing file manufacturers.xm (application/xm) to [base]

POSTing file mem xm (application/xm) to [base]

POSTing file noney.xm (application/xm) to [base]

PGSTing file nmonitor.xm (application/xm) to [base]

POSTing file nonitor2.xm (application/xm) to [base]

POSTing file nmp500.xm (application/xm) to [base]

POSTing file sd500.xm (application/xm) to [base]

POSTing file solr.xm (application/xm) to [base]

POSTing file utf8-exanple.xm (application/xm) to [base]

POSTing file vidcard.xm (application/xm) to [base]

14 files indexed.

COW Tting Solr index changes to http://|ocal host:8983/sol r/gettingstarted/ update. ..
Ti me spent: 0:00: 00. 153

That's it! Solr has indexed the documents contained in those files.

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a URL that
includes the query parameters. This is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video":
http://l ocal host: 8983/solr/gettingstarted/sel ect ?g=vi deo

Notice how the URL includes the host name (I ocal host), the port number where the server is listening (8983),
the application name (sol r), the request handler for queries (sel ect), and finally, the query itself (q=vi deo).

The results are contained in an XML document, which you can examine directly by clicking on the link above.
The document contains two parts. The first part is the r esponseHeader , which contains information about the
response itself. The main part of the reply is in the result tag, which contains one or more doc tags, each of
which contains fields from documents that match the query. You can use standard XML transformation
techniques to mold Solr's results into a form that is suitable for displaying to users. Alternatively, Solr can output
the results in JSON, PHP, Ruby and even user-defined formats.

Just in case you are not running Solr as you read, the following screen shot shows the result of a query (the next
example, actually) as viewed in Mozilla Firefox. The top-level response contains a | st named r esponseHeade

Apache Solr Reference Guide 5.5 9

https://cwiki.apache.org/confluence/display/solr/Post+Tool#PostTool-Windows

r and a result named response. Inside result, you can see the three docs that represent the search results.

e®no Mozilla Firefox
J. . hup:/ flocalhost... /select?g=video HTl -
|. localhost:8983 (solrfselect?’g=video v C'] (_"‘l' GoogQ) @

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <response>
— <Ist name="responscHeader">
<int name="status">0</int>
<int name="QTime">0</int>
— <Ist name="params">
<str name="q">video</str>
</Ist>
</Ist>
— <result name="response" numFound="3" start="0">
- <doc>
— <arr name="cat">
<str>electronics</str>
<str>music</str>
</arr>
— <arr name="features">
<str=iTunes, Podcasts, Audiobooks</str>
— <str>
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video
</str>
— <str>
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str=>Up to 20 hours of battery life</str>
— <str>
Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video
</str>
— <str>
Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback, Upgradeable
firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication
</str>
</arr>
<str name="id">MA147LL/A</str>
<bool name="inStock">true</bool>
<str name="includes">earbud headphones, USB cable</str>
<str name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>
<str name="name">Apple 60 GB iPod with Video Playback Black</str>
<int name="popularity">10</int>
<float name="price">399 O</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">5.5</float>
</doc>

*-ﬂdﬂhww PR P R ST e Ny B PV s

-
U

An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the query syntax.
This one is the same as before but the results only contain the ID, name, and price for each returned document.
If you don't specify which fields you want, all of them are returned.

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2q=vi deo&f| =i d, nane, pri ce

Here is another example which searches for "black" in the nane field only. If you do not tell Solr which field to
search, it will search default fields, as specified in the schema.

http://1 ocal host: 8983/ sol r/ gettingstarted/sel ect ?g=nane: bl ack

You can provide ranges for fields. The following query finds every document whose price is between $0 and
$400.

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2q=price: [0%20TO¥%20400] & | =i d, name

Apache Solr Reference Guide 5.5 10

, price

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that are
meaningful to your application. For example, a shopping site could provide facets to narrow search results by
manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this power, take a look
at the following query. It adds f acet =true and f acet . fi el d=cat.

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2q=price: [0%20TO¥20400] & | =i d, nanme
, priceé&f acet =trueé&f acet.fiel d=cat

In addition to the familiar r esponseHeader and response from Solr, a f acet _count s element is also present.
Here is a view with the r esponseHeader and response collapsed so you can see the faceting information
clearly.

An XML Response with faceting

<response>
<l st nanme="responseHeader" >
</|st>
<result nane="response" nunfFound="9" start="0">
<doc>
<str nanme="id">SOLR1000</str>

<str name="nane">Solr, the Enterprise Search Server</str>
<fl oat nane="price">0.0</fl oat ></ doc>

</result>
<l st nanme="facet counts">
<l st nane="facet_queries"/>
<l st nanme="facet_fields">
<l st nane="cat">
<int name="el ectroni cs">6</int>
<int name="nenory">3</int>
<int name="search">2</int>
<int name="sof tware">2</int>
<i nt name="canera">1</int>
<int name="copi er">1</int>
<int name="nul tifunction printer">1</int>
<int name="rmnusi c">1</int>
<int name="printer">1</int>
<i nt name="scanner">1</int>
<i nt name="connector">0</int>
<int name="currency">0</int>
<i nt name="graphi cs card">0</int>
<int name="hard drive">0</int>
<int name="nonitor">0</int>
</l|st>
</|st>
<l st nanme="facet_dates"/>
<l st name="facet_ranges"/>
</l|st>
</ response>

The facet information shows how many of the query results have each possible value of the cat field. You could
easily use this information to provide users with a quick way to narrow their query results. You can filter results
by adding one or more filter queries to the Solr request. Here is a request further constraining the request to
documents with a category of "software".

Apache Solr Reference Guide 5.5 11

http://1 ocal host: 8983/ solr/gettingstarted/sel ect ?2qg=pri ce: 0%20TO¥20400&f | =i d, nane, p
ri ce&f acet =trueé&f acet.fiel d=cat & gq=cat: sof t ware

A Quick Overview

Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a example of how Solr might be integrated into an application:

>
Content Dat
Management “—> S ata
System ource

i"[)‘ End User

SOLr’ | Application

In the scenario above, Solr runs along side other server applications. For example, an online store application
would provide a user interface, a shopping cart, and a way to make purchases for end users; while an inventory
management application would allow store employees to edit product information. The product metadata would
be kept in some kind of database, as well as in Solr.

Solr makes it easy to add the capability to search through the online store through the following steps:

1. Define a schema. The schema tells Solr about the contents of documents it will be indexing. In the online
store example, the schema would define fields for the product name, description, price, manufacturer, and
so on. Solr's schema is powerful and flexible and allows you to tailor Solr's behavior to your application.
See Documents, Fields, and Schema Design for all the details.

2. Deploy Solr to your application server.

3. Feed Solr the document for which your users will search.

4. Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which means, in
essence, that a query is a simple HTTP request URL and the response is a structured document: mainly XML,
but it could also be JSON, CSV, or some other format. This means that a wide variety of clients will be able to
use Solr, from other web applications to browser clients, rich client applications, and mobile devices. Any
platform capable of HTTP can talk to Solr. See Client APIs for details on client APIs.

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr offers support

Apache Solr Reference Guide 5.5 12

for the simplest keyword searching through to complex queries on multiple fields and faceted search results. Sea
rching has more information about searching and queries.

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications should do the
trick.

A relatively common scenario is that you have so much data, or so many queries, that a single Solr server is
unable to handle your entire workload. In this case, you can scale up the capabilities of your application using So
IrCloud to better distribute the data, and the processing of requests, across many servers. Multiple options can
be mixed and matched depending on the type of scalability you need.

For example: "Sharding" is a scaling technique in which a collection is split into multiple logical pieces called
"shards" in order to scale up the number of documents in a collection beyond what could physically fit on a single
server. Incoming queries are distributed to every shard in the collection, which respond with merged results.
Another technigue available is to increase the "Replication Factor" of your collection, which allows you to add
servers with additional copies of your collection to handle higher concurrent query load by spreading the
requests around to multiple machines. Sharding and Replication are not mutually exclusive, and together make
Solr an extremely powerful and scalable platform.

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous Internet sites that
use Solr today are Macy's, EBay, and Zappo's.

For more information, take a look at https://wiki.apache.org/solr/PublicServers.

A Step Closer

You already have some idea of Solr's schema. This section describes Solr's home directory and other
configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory contains
important configuration information and is the place where Solr will store its index. The layout of the home
directory will look a little different when you are running Solr in standalone mode vs when you are running in
SolrCloud mode.

The crucial parts of the Solr home directory are shown in these examples:

Standalone Mode

<sol r - honme-di rect ory>/
sol r. xm
core_nanel/
core.properties
conf/
sol rconfig. xm
schema. xmi
dat a/
core_nane2/
core.properties
conf/
sol rconfig. xm
schema. xm
dat a/

Apache Solr Reference Guide 5.5 13

https://wiki.apache.org/solr/PublicServers

SolrCloud Mode

<sol r - honme-di rectory>/
sol r. xm
core_nanel/
core.properties
dat a/
core_nane2/
core.properties
dat a/

You may see other files, but the main ones you need to know are:

® sol r. xm specifies configuration options for your Solr server instance. For more information on sol r. xm
| see Solr Cores and solr.xml.
® Per Solr Core:
® core. properti es defines specific properties for each core such as its name, the collection the
core belongs to, the location of the schema, and other parameters. For more details on cor e. pro
perti es, see the section Defining core.properties.
® solrconfig. xm controls high-level behavior. You can, for example, specify an alternate location
for the data directory. For more information on sol r conf i g. xm , see Configuring solrconfig.xml.
® schema. xm (or managed- schena instead) describes the documents you will ask Solr to index.
Inside schema. xni , you define a document as a collection of fields. You get to define both the
field types and the fields themselves. Field type definitions are powerful and include information
about how Solr processes incoming field values and query values. For more information on schem
a. xm , see Documents, Fields, and Schema Design. If you are using Solr's Schema API to
manage your fields, you would see managed- schena instead of schema. xnl (see Managed
Schema Definition in SolrConfig for more information).
® dat a/ The directory containing the low level index files.

Note that the SolrCloud example does not include a conf directory for each Solr Core (so there is no sol r conf
i g. xm orschena. xnl). This is because the configuration files usually found in the conf directory are stored
in ZooKeeper so they can be propagated across the cluster.

If you are using SolrCloud with the embedded ZooKeeper instance, you may also see zoo. cf g and zoo. dat a
which are ZooKeeper configuration and data files. However, if you are running your own ZooKeeper ensemble,
you would supply your own ZooKeeper configuration file when you start it and the copies in Solr would be
unused. For more information about ZooKeeper and SolrCloud, see the section SolrCloud.

Solr Start Script Reference

Solr includes a script known as "bi n/ sol r " that allows you to start and stop Solr, create and delete collections
or cores, and check the status of Solr and configured shards. You can find the script in the bi n/ directory of your
Solr installation. The bi n/ sol r script makes Solr easier to work with by providing simple commands and
options to quickly accomplish common goals.

In this section, the headings below correspond to available commands. For each command, the available options
are described with examples.

More examples of bin/solr in use are available throughout the Solr Reference Guide, but particularly in the
sections Running Solr and Getting Started with SolrCloud.

Apache Solr Reference Guide 5.5 14

® Starting and Stopping
® Start and Restart
® Stop
® |nformational
® Version
® Status
® Healthcheck
® Collections and Cores
®* Create
® Delete
® ZooKeeper Operations
® Uploading a Configuration Set
® Downloading a Configuration Set

Starting and Stopping

Start and Restart

The start command starts Solr. The restart command allows you to restart Solr while it is already running or if it
has been stopped already.

The start and restart commands have several options to allow you to run in SolrCloud mode, use an example
configuration set, start with a hostname or port that is not the default and point to a local ZooKeeper ensembile.

bin/solr start [options]
bin/solr start -help
bin/solr restart [options]
bin/solr restart -help

When using the restart command, you must pass all of the parameters you initially passed when you started
Solr. Behind the scenes, a stop request is initiated, so Solr will be stopped before being started again. If no
nodes are already running, restart will skip the step to stop and proceed to starting Solr.

Available Parameters

The bin/solr script provides many options to allow you to customize the server in common ways, such as
changing the listening port. However, most of the defaults are adequate for most Solr installations, especially
when just getting started.

Parameter Description Example
-a "<string>" Start Solr with additional JVM bin/solr start -a
parameters, such as those starting with " - Xdebug - Xrunj dwp: t ransport =dt _socket,

-X. If you are passing JVM parameters server =y, suspend=n, addr ess=1044"
that begin with "-D", you can omit the -a
option.

Apache Solr Reference Guide 5.5 15

-cloud

-d <dir>

-e <name>

-h
<hostname>

-m
<memory>

Start Solr in SolrCloud mode, which will
also launch the embedded ZooKeeper
instance included with Solr.

This option can be shortened to simply
- C.

If you are already running a ZooKeeper
ensemble that you want to use instead
of the embedded (single-node)
ZooKeeper, you should also pass the -z
parameter.

For more details, see the section SolrCl
oud Mode below.

Define a server directory, defaults to se
rver (asin, $SOLR_HOVE/ server). It
is uncommon to override this option.
When running multiple instances of Solr
on the same host, it is more common to
use the same server directory for each
instance and use a unique Solr home
directory using the -s option.

Start Solr with an example
configuration. These examples are
provided to help you get started faster
with Solr generally, or just try a specific
feature.

The available options are:

cloud
techproducts
dih
schemaless

See the section Running with Example
Configurations below for more details
on the example configurations.

Start Solr in the foreground; you cannot
use this option when running examples
with the -e option.

Start Solr with the defined hostname. If
this is not specified, 'localhost' will be
assumed.

Start Solr with the defined value as the
min (-Xms) and max (-Xmx) heap size
for the JVM.

Apache Solr Reference Guide 5.5

bi n/ sol r

bi n/ sol r

bi n/ sol r

bi n/ solr

bi n/ solr

bi n/ solr

start

start

start

start

start

start

-C

-d newServerDir

-e schemual ess

-f

-h search. nysolr.com

-m 1g

16

-noprompt Start Solr and suppress any prompts
that may be seen with another option.
This would have the side effect of

accepting all defaults implicitly.

For example, when using the "cloud"
example, an interactive session guides
you through several options for your
SolrCloud cluster. If you want to accept
all of the defaults, you can simply add
the -noprompt option to your request.
-p <port> Start Solr on the defined port. If this is
not specified, '8983' will be used.
-s <dir> Sets the solr.solr.home system
property; Solr will create core
directories under this directory. This

allows you to run multiple Solr instances

on the same host while reusing the
same server directory set using the -d

parameter. If set, the specified directory

should contain a solr.xml file, unless
solr.xml exists in ZooKeeper. The
default value is server/ sol r.

This parameter is ignored when running

examples (-e), as the solr.solr.home
depends on which example is run.

-V Start Solr with verbose messages from
the start script.

-z <zkHost> Start Solr with the defined ZooKeeper
connection string. This option is only
used with the -c option, to start Solr in
SolrCloud mode. If this option is not
provided, Solr will start the embedded
ZooKeeper instance and use that

instance for SolrCloud operations.

bin/solr start -e cloud -nopronpt
bin/solr start -p 8655

bin/solr start -s newHone
bin/solr start -V

bin/solr start -c -z

serverl: 2181, server 2: 2181

To emphasize how the default settings work take a moment to understand that the following commands are

equivalent:
bin/solr start

bin/solr start -h | ocal host

-p 8983 -d server -s solr -m512m

It is not necessary to define all of the options when starting if the defaults are fine for your needs.

Setting Java System Properties

The bin/solr script will pass any additional parameters that begin with -D to the JVM, which allows you to set

arbitrary Java system properties. For example, to set the auto soft-commit frequency to 3 seconds, you can do:

bin/solr start

SolrCloud Mode

The -c and -cloud options are equivalent:

Apache Solr Reference Guide 5.5

-Dsol r. aut oSof t Conmi t . maxTi ne=3000

17

bin/solr start -c
bin/solr start -cloud

If you specify a ZooKeeper connection string, such as -z 192. 168. 1. 4: 2181, then Solr will connect to
ZooKeeper and join the cluster. If you do not specify the -z option when starting Solr in cloud mode, then Solr will
launch an embedded ZooKeeper server listening on the Solr port + 1000, i.e., if Solr is running on port 8983,
then the embedded ZooKeeper will be listening on port 9983.

IMPORTANT: If your ZooKeeper connection string uses a chroot, such as | ocal host : 2181/ sol r, then you
need to bootstrap the /solr znode before launching SolrCloud using the bin/solr script. To do this, you need to
use the zkcl i . sh script shipped with Solr, such as:

server/scripts/cloud-scripts/zkcli.sh -zkhost |ocal host:2181/solr -cnd bootstrap
-sol rhome server/solr

When starting in SolrCloud mode, the interactive script session will prompt you to choose a configset to use.

For more information about starting Solr in SolrCloud mode, see also the section Getting Started with SolrCloud.

Running with Example Configurations

bin/solr start -e <nanme>

The example configurations allow you to get started quickly with a configuration that mirrors what you hope to
accomplish with Salr.

Each example launches Solr in with a managed schema, which allows use of the Schema API to make schema
edits, but does not allow manual editing of schera. xni . If you would prefer to manually modify the schema. xm
| file itself, you can change this default as described in the section Managed Schema Definition in SolrConfig.

Unless otherwise noted in the descriptions below, the examples do not enable SolrCloud nor schemaless mode.
The following examples are provided:

® cloud: This example starts a 1-4 node SolrCloud cluster on a single machine. When chosen, an
interactive session will start to guide you through options to select the initial configset to use, the number
of nodes for your example cluster, the ports to use, and name of the collection to be created. When using
this example, you can choose from any of the available configsets found in $SOLR_HOVE/ server/ sol r
/ confi gsets.

® techproducts: This example starts Solr in standalone mode with a schema designed for the sample
documents included in the $SOLR_HOVE/ exanpl e/ exanpl edocs directory. The configset used can be
found in $SOLR_HOME/ server/ sol r/ confi gset s/ sanpl e_t echpr oduct s_confi gs.

® dih: This example starts Solr in standalone mode with the DatalmportHandler (DIH) enabled and several
example dat aconfi g. xnml files pre-configured for different types of data supported with DIH (such as,
database contents, email, RSS feeds, etc.). The configset used is customized for DIH, and is found in $SO
LR_HOVE/ exanpl e/ exanpl e- DI H sol r/ conf . For more information about DIH, see the section Uploa
ding Structured Data Store Data with the Data Import Handler.

® schemaless: This example starts Solr in standalone mode using a managed schema, as described in the
section Managed Schema Definition in SolrConfig, and provides a very minimal pre-defined schema. Solr
will run in Schemaless Mode with this configuration, where Solr will create fields in the schema on the fly
and will guess field types used in incoming documents. The configset used can be found in $SCLR_HOVE
/ server/solr/configsets/data_driven_schena_configs.

1. The run-in-foreground option (-f) does not work with the -e option since the script needs to perform

additional tasks after starting the Solr server.

Stop

Apache Solr Reference Guide 5.5 18

The stop command sends a STOP request to a running Solr node, which allows it to shutdown gracefully. The
command will wait up to 5 seconds for Solr to stop gracefully and then will forcefully kill the process (kill -9).

bi n/solr stop [options]

bin/solr stop -help

Available Parameters

Parameter Description Example
-p <port> Stop Solr running on the given port. If you are running more than one instance, bi n/solr
or are running in SolrCloud mode, you either need to specify the ports in stop -p
separate requests or use the -all option. 8983
-all Stop all running Solr instances that have a valid PID. bi n/ solr
stop -all
-k <key> Stop key used to protect from stopping Solr inadvertently; default is "solrrocks". bi n/solr
stop -k
sol rrocks

Informational

Version

The version command simply returns the version of Solr currently installed and immediately exists.

$ bin/solr version
5.x.0

Status

The status command displays basic JSON-formatted information for any Solr nodes found running on the local
system. The status command uses the SOLR_PID_DIR environment variable to locate Solr process ID files to
find running Solr instances; the SOLR_PID_DIR variable defaults to the bin directory.

bi n/solr status

The output will include a status of each node of the cluster, as in this example:

Apache Solr Reference Guide 5.5

19

Found 2 Solr nodes:

Sol r process 39920 running on port 7574
{
"sol r_home": "/ Applications/Sol r/solr-5.0.0/exanpl e/ cl oud/ node2/solr/",
"version":"5.0.0 1658469 - anshungupta - 2015-02-09 09: 54: 36",
"startTi me":"2015-02-10T17: 19: 54. 739Z",
"uptinme":"1 days, 23 hours, 55 mnutes, 48 seconds"”,
"nmenory":"77.2 MB (%5.7) of 490.7 MB"
"cloud":{
"ZooKeeper": "l ocal host: 9865",
"liveNodes":"2",
"col l ections":"2"}}

Sol r process 39827 running on port 8865

"sol r_home": "/ Applications/Sol r/solr-5.0.0/exanpl e/ cl oud/ nodel/solr/",
"version":"5.0.0 1658469 - anshungupta - 2015-02-09 09: 54: 36",
"startTi me":"2015-02- 10T17: 19: 49. 057Z",
"uptinme":"1 days, 23 hours, 55 mnutes, 54 seconds",
"menory":"94.2 MB (9%9.2) of 490.7 MB",
"cloud":{

"ZooKeeper": "l ocal host: 9865",

"liveNodes":"2",

"col l ections":"2"}}

Healthcheck

The healthcheck command generates a JSON-formatted health report for a collection when running in SolrCloud
mode. The health report provides information about the state of every replica for all shards in a collection,
including the number of committed documents and its current state.

bi n/ sol r heal t hcheck [options]

bi n/ solr heal t hcheck -help

Available Parameters

Parameter Description Example

-C Name of the collection to run a healthcheck against (required). bi n/ solr

<collection> heal t hcheck
-C

gettingstarted

-z <zkhost> ZooKeeper connection string, defaults to localhost:9983. If you are running bi n/ sol r
Solr on a port other than 8983, you will have to specify the ZooKeeper heal t hcheck
connection string. By default, this will be the Solr port + 1000. -z
| ocal host: 2181

Below is an example healthcheck request and response using a non-standard ZooKeeper connect string, with 2
nodes running:

Apache Solr Reference Guide 5.5 20

$ bin/solr healthcheck -c gettingstarted -z | ocal host: 9865

{

"collection":"gettingstarted",

"status":"heal thy",

"nunDocs": 0,

"nunShar ds": 2,

"shards": [

{

"shard": "shardl",
"status":"heal t hy",
"replicas":[

{
"nanme":"core_nodel",
"url":"http://10.0.1.10: 8865/ solr/gettingstarted_shardl_replica2/",
"nunDocs": 0,
"status":"active",
"uptine":"2 days, 1 hours, 18 minutes, 48 seconds",
"menmory":"25.6 MB (%.2) of 490.7 MB",
"l eader":true},
{

"nanme":"core_node4",
“url":"http://10.0.1.10: 7574/ sol r/ gettingstarted_shardl_replical/",
"nunDocs": 0,
"status":"active",
"uptine":"2 days, 1 hours, 18 minutes, 42 seconds",
"menory":"95.3 MB (9%49.4) of 490.7 MB"}]},
{

"shard":"shard2",

"status":"heal t hy",

"replicas":|

{
"nanme":"core_node2",
“url":"http://10.0.1.10: 8865/ solr/gettingstarted_shard2_replica2/",
"numbDocs": 0,
"status":"active",
"uptine":"2 days, 1 hours, 18 minutes, 48 seconds",
"menmory":"25.8 MB (%.3) of 490.7 MB"},
{

"nane":"core_node3",

"url":"http://10.0.1.10: 7574/ sol r/ gettingstarted_shard2_replicall/",
"nunbDocs": 0,

"status":"active",

"uptine":"2 days, 1 hours, 18 mnutes, 42 seconds",

"menory":"95.4 MB (9%49.4) of 490.7 MB",

"l eader":true}]}]}

Collections and Cores

The bin/solr script can also help you create new collections (in SolrCloud mode) or cores (in standalone mode),
or delete collections.

Create

|~

Apache Solr Reference Guide 5.5

21

' User permissions on "create"
When using the "create” command, be sure that you run this command as the same user that you use to
start Solr. If you use the UNIX/Linux install script, this will normally be a user named "solr". If Solr is
running as the solr user but you use root to create a core, then Solr will not be able to write to the
directories created by the start script.

If you are running in cloud mode, this very likely will not be a problem. In cloud mode, all the
configuration is stored in ZooKeeper, and the create script does not need to make directories or copy
configuration files. Solr itself will create all the necessary directories.

The create command detects the mode that Solr is running in (standalone or SolrCloud) and then creates a core
or collection depending on the mode.

bi n/solr create options

bin/solr create -help

Available Parameters

Parameter Description Example
-C <name> Name of the core or collection to create (required). bi n/ sol r
create -c
nycol | ecti on
-d <confdir> The configuration directory. This defaults to dat a_dri ven_schema_ bin/solr
configs. create -d

See the section Configuration Directories and SolrCloud below for
more details about this option when running in SolrCloud mode.

basi c_confi gs

-n <configName> The configuration name. This defaults to the same name as the core bi n/ sol r
or collection. create -n
basi c
-p <port> Port of a local Solr instance to send the create command to; by default bi n/ sol r
the script tries to detect the port by looking for running Solr instances. create -p
. o . : . 8983
This option is useful if you are running multiple standalone Solr
instances on the same host, thus requiring you to be specific about
which instance to create the core in.
-s <shards> Number of shards to split a collection into, default is 1; only applies bi n/ sol r
hard when Solr is running in SolrCloud mode. create -s 2
-shards

-rf <replicas>

-replicationFactor

Number of copies of each document in the collection. The default is 1
(no replication).

Configuration Directories and SolrCloud

bi n/ sol r
create -rf 2

Before creating a collection in SolrCloud, the configuration directory used by the collection must be uploaded to
ZooKeeper. The create command supports several use cases for how collections and configuration directories

work. The main decision you need to make is whether a configuration directory in ZooKeeper should be shared
across multiple collections. Let's work through a few examples to illustrate how configuration directories work in
SolrCloud.

First, if you don't provide the - d or - n options, then the default configuration ($SOLR_HOVE/ ser ver/ sol r/ con
figsets/data_driven_schenma_configs/conf)is uploaded to ZooKeeper using the same name as the

Apache Solr Reference Guide 5.5 22

collection. For example, the following command will result in the data_driven_schema_configs configuration
being uploaded to / confi gs/ cont act s in ZooKeeper: bi n/solr create -c contacts. If you create
another collection, by doing bi n/ solr create -c cont act s2, then another copy of the dat a_dri ven_sch
ema_conf i gs directory will be uploaded to ZooKeeper under / conf i gs/ cont act s2. Any changes you make
to the configuration for the contacts collection will not affect the contacts2 collection. Put simply, the default
behavior creates a unique copy of the configuration directory for each collection you create.

You can override the name given to the configuration directory in ZooKeeper by using the - n option. For
instance, the command bi n/ solr create -c | ogs -d basic_configs -n basic will upload the serve
r/ sol r/ configsets/basic_configs/conf directory to ZooKeeper as / confi gs/ basi c.

Notice that we used the - d option to specify a different configuration than the default. Solr provides several
built-in configurations under ser ver/ sol r/ conf i gset s. However you can also provide the path to your own
configuration directory using the - d option. For instance, the command bi n/ solr create -c nycoll -d
/t mp/ nyconfi gs, will upload / t np/ myconf i gs into ZooKeeper under / confi gs/ mycol | . To reiterate, the
configuration directory is named after the collection unless you override it using the - n option.

Other collections can share the same configuration by specifying the name of the shared configuration using the
- n option. For instance, the following command will create a new collection that shares the basic configuration
created previously: bi n/solr create -c 1 0gs2 -n basic.

Data-driven schema and shared configurations

The data_driven_schema_configs schema can mutate as data is indexed. Consequently, we recommend that
you do not share data-driven configurations between collections unless you are certain that all collections should
inherit the changes made when indexing data into one of the collections.

Delete

The delete command detects the mode that Solr is running in (standalone or SolrCloud) and then deletes the
specified core (standalone) or collection (SolrCloud) as appropriate.

bin/solr delete [options]
bin/solr delete -help

If running in SolrCloud mode, the delete command checks if the configuration directory used by the collection
you are deleting is being used by other collections. If not, then the configuration directory is also deleted from
ZooKeeper. For example, if you created a collection by doing bi n/ sol r create -c contact s, then the
delete command bi n/ solr del ete -c¢ contact s will check to see if the / confi gs/ cont act s configuratio
n directory is being used by any other collections. If not, then the / conf i gs/ cont act s directory is removed
from ZooKeeper.

Available Parameters

Parameter Description Example
-C <name> Name of the core / collection to delete (required). bi n/ sol r
delete -c
mycol |
-deleteConfig Delete the configuration directory from ZooKeeper. The default is true. bi n/ sol r
<true|false> th . o di i< bei db h llect hen | del ete
If the configuration directory is being used by another collection, then it - del et eConfi g

will not be deleted even if you pass -deleteConfig true. fal se

Apache Solr Reference Guide 5.5 23

-p <port> The port of a local Solr instance to send the delete command to. By bi n/ sol r
default the script tries to detect the port by looking for running Solr delete -p 8983
instances.

This option is useful if you are running multiple standalone Solr
instances on the same host, thus requiring you to be specific about
which instance to delete the core from.

ZooKeeper Operations

The bin/solr script allows certain operations affecting ZooKeeper. These operations are for SolrCloud mode only.
bin/solr zk [options]
bin/solr zk -help

NOTE: Solr should have been started at least once before issuing these commands to initialize ZooKeeper with
the znodes Solr expects. Once ZooKeeper is initialized, Solr doesn't need to be running on any node to use
these commands.

Uploading a Configuration Set

Use this ZooKeeper sub-command to upload one of the pre-configured configuration set or a customized
configuration set to ZooKeeper.

Available Parameters (all parameters are required)

Parameter Description Example

-upconfig Upload a configuration set from the local - upconfig
filesystem to ZooKeeper

-n <name> Name of the configuration set in ZooKeeper. -n nyconfig
This command will upload the configuration set
to the "configs" ZooKeeper node giving it the
name specified.

You can see all uploaded configuration sets in
the Admin Ul via the Cloud screens. Choose
Cloud->tree->configs to see them.

If a pre-existing configuration set is specified, it
will be overwritten in ZooKeeper.

-d The path of the configuration set to upload. It -d directory_under _configsets
<configset should have a "conf" directory immediately -d
dir> below it that in turn contains solrconfig.xml etc. / absol ut e/ pat h/ t o/ confi gset/source

If just a name is supplied,
$SOLR_HOME/server/solr/configsets will be
checked for this name. An absolute path may be
supplied instead.

-2 The ZooKeeper connection string. -z 123.321.23.43: 2181
<zkHost>

Apache Solr Reference Guide 5.5 24

An example of this command with these parameters is:
bi n/solr zk -upconfig -z 111.222.333.444:2181 -n mynewconfig -d /path/to/configset

This command does not automatically make changes effective! It simply uploads the configuration sets to
ZooKeeper. You can use the Collections API to issue a RELOAD command for any collections that uses this
configuration set.

Downloading a Configuration Set
Use this ZooKeeper sub-command to download a configuration set from ZooKeeper to the local filesystem.

Available Parameters (all parameters are required)

Parameter Description Example

-downconfig Download a configuration set from -downconfig
ZooKeeper to the local filesystem.

-n <name> Name of config set in ZooKeeper to -n myconfig
download. The Admin
UI>>Cloud>>tree>>configs node lists all
available configuration sets.

-d The path to write the downloaded -d directory_under _configsets-d
<configset configuration set into. / absol ut e/ pat h/ t o/ confi gset/desti nation
dir>

If just a name is supplied,
SOLR_HOME/server/solr/configsets will
be the parent.

An absolute path may be supplied as
well.

In either case, pre-existing
configurations at the destination will be
overwritten!

-z <zkHost> The ZooKeeper connection string. -z 123.321.23.43: 2181

An example of this command with the parameters is:

bi n/solr zk -downconfig -z 111.222. 333.444:2181 -n nynewonfig -d
/ pat h/ t o/ confi gset

A "best practice" is to keep your configuration sets in some form of version control as the system-of-record. In
that scenario, downconf i g should rarely be used.

Apache Solr Reference Guide 5.5 25

Upgrading Solr

If you are already using Solr 5.4, Solr 5.5 should not present any major problems. However, you should review
the CHANGES. t xt file found in your Solr package for changes and updates that may effect your existing
implementation.

Upgrading from 5.4.x

® The Solr schema version has been increased to 1.6. Since schema version 1.6, all non-stored docVal ue
s fields will be returned along with other stored fields when all fields (or pattern matching globs) are
specified to be returned (e.g. f | =*) for search queries. This behavior can be turned on and off by setting '
useDocVal uesAsSt or ed' parameter for a field or a field type to t r ue (default since schema version 1.6)
or f al se (default till schema version 1.5).
Note that enabling this property has performance implications because DocValues are column-oriented
and may therefore incur additional cost to retrieve for each returned document. All example schema are
upgraded to version 1.6 but any older schemas will default to useDocVal uesAsSt or ed="f al s" e and
continue to work as in older versions of Solr. If this new behavior is desirable, then you should set version
attribute in your schema file to '1.6'. Re-indexing is not necessary to upgrade the schema version.
Also note that while returning non-stored fields from docValues (default in schema versions 1.6+, unless u
seDocVal uesAsSt or ed is false), the values of a multi-valued field are returned in sorted order. If you
require the multi-valued fields to be returned in the original insertion order, then make your multi-valued
field as stored. This requires re-indexing. See SOLR-8220 for more details.

® All protected methods from Cor eAdm nHandl er other than handl eCust omAct i on() have been
removed and can no longer be overridden, If you still wish to override those methods, override the handl
eRequest Body() explicitly. see SOLR-8476 for more details.

® The PERSI STCoreAdmin action which was a NOOP and returned a deprecated message (along with the
corresponding SolrJ options) has been removed. See SOLR-8476 for more details.

® bi n/ post now defaults application/json files to the / updat e/ j son/ docs end-point. Use "- f or mat
sol r " to force files to the / updat e end-point. See SOLR-7042 for more details.

®* Insol rconfig.xm the <ner gePol i cy> element is deprecated in favor of a similar <ner gePol i cyFa
ct or y> element, the <ner geFact or > and <maxMer geDocs> elements are also deprecated, please see
SOLR-8621 for full details.

To migrate your existing sol rconfi g. xnl , you can replace elements as follows:

Apache Solr Reference Guide 5.5 26

http://lucene.apache.org/solr/5_5_0/changes/Changes.html
https://issues.apache.org/jira/browse/SOLR-8220
https://issues.apache.org/jira/browse/SOLR-8476
https://issues.apache.org/jira/browse/SOLR-8476
https://issues.apache.org/jira/browse/SOLR-7042
https://issues.apache.org/jira/browse/SOLR-8621

<!'-- TieredMergePolicy example -->
<!-- deprecated -->
<mer geFact or >??</ ner geFact or >
<mer gePol i cy cl ass="org. apache. | ucene. i ndex. Ti er edMer gePol i cy" >
<bool nane="useConpoundFi | e">???</bool > <!-- deprecated since Lucene/ Sol r
4.4.0 -->

</ mer gePol i cy>

<!-- replacenent -->
<useConpoundFi | e>??7?</ useConpoundFi | e> <! -- since Lucene/Solr 4.4.0 -->
<mer gePol i cyFactory cl ass="org. apache. sol r. i ndex. Ti er edMer gePol i cyFact ory" >
<int name="nmaxMer geAt Once">??</int> <!-- fornerly the <mergeFactor> el enent
inplicitly set this -->
<int name="segnentsPerTier">??</int> <!-- formerly the <nergeFactor> el enent

implicitly set this -->

</ mer gePol i cyFact ory>

<!-- Log(ByteSi ze| Doc) MergePol i cy exanple -->
<!-- deprecated -->
<maxMer geDocs>????</ maxMer geDocs>
<mer geFact or >??</ ner geFact or >
<mer gePol i cy cl ass="org. apache. | ucene. i ndex. Log?Mer gePol i cy" >
<bool nane="useConpoundFi | e">???</bool > <!-- deprecated since Lucene/ Sol r
4.4.0 -->

</ mer gePol i cy>

<!-- replacenent -->
<useConpoundFi | e>??7?</ useConpoundFi | e> <! -- since Lucene/Solr 4.4.0 -->
<mer gePol i cyFactory cl ass="org. apache. sol r. i ndex. Log?Mer gePol i cyFact ory" >

<i nt name="nmaxMer geDocs" >????</int> <!-- formerly the <maxMergeDocs> el enent
set this -->

<int name="nergeFactor">??</int> <l-- fornerly the <nergeFactor> el enent set
this -->

</ mer gePol i cyFact ory>

® Clearing up stored async collection api responses via REQUESTSTATUS call is now deprecated and would
be removed in 6.0. See SOLR-8648 for more details.

* Modifying the schema using the "single action at a time", REST based "/ schenma/ fi el ds", "/ schenma/ d
ynam cfi el ds", "/ schena/ copyfi el ds"and"/ schema/fi el dt ypes" Schema APIs is now
deprecated and will be removed in the future. Users should instead use the "bulk actions" Schema API
via "/ schema". Note that requesting schema information via GET operations on these same endpoints

has not been deprecated, and will be continue to be supported. See SOLR-6594 for more details.

Upgrading from Older Versions of Solr

Users upgrading from older versions are strongly encouraged to consult CHANGES. t xt for the details of all cha
nges since the version they are upgrading from.

® DefaultSimlarityFactory has beenrenamedto Cl assi cSim | arityFactory to match the
underlying rename of Def aul t Simi l arity to d assi cSi m | ari ty and the (eventual) move away
from using it as a default. If you currently have Def aul t Si i | ari t yFact ory explicitly referenced in
your schena. xmi , you will now get a warning urging you to edit your config to use the functionally

Apache Solr Reference Guide 5.5 27

https://issues.apache.org/jira/browse/SOLR-8648
https://issues.apache.org/jira/browse/SOLR-6594
http://lucene.apache.org/solr/5_5_0/changes/Changes.html

identical Cl assicSim larityFactory.Defaul t SinmlarityFactory will be removed completely in
Solr 6. See SOLR-8239 for more details.
® The following internal APIs are deprecated / moved in Solr 5.4 and higher. If you have custom plugins
usmg these APIs please update them see SOLR-7859 and SOLR-8307 for more details:
Sol r Core. get Start Ti ne: Use Sol r Cor e. get St art Ti neSt anp instead.
® Sol rl ndexSear cher. get OpenTi ne: Use Sol r | ndexSear cher . get OpenTi neSt anp instead

® EnptyEntityResol ver was moved from cor e to sol rj , and moved from the or g. apache. so
Ir.util packagetoorg. apache. sol r. common. If you are using this class, you will need to
adjust the import package.
® Solr does not support forcefully unlocking an index as of Solr 5.3. This is no longer supported by the
underlying Lucene locking framework. The unl ockOnSt ar t up setting in solrconfig.xml has no effect
anymore. If you are using simple lock factory (not recommended) or hdfs lock factory, you may need to
manually unlock by deleting the lock file from filesystem or HDFS.
® The system property sol r. sol rxm . | ocat i on is not supported as of Solr 5.3. Now, sol r. xm is
first looked up in zookeeper, and if not found, fallback to SOLR_HOME.
® SolrJ's Col | ecti onAdm nRequest class is now marked as abstract. Use one of its
concrete sub-classes instead.
® Sol rd i ent query functions now declare themselves as throwing | OExcept i on in addition to Sol r Ser
ver Except i on, to bring them in line with the update functions.
® Sol r Request . process() is now final. Subclasses should instead be parameterized by their
corresponding Sol r Response type, and implement cr eat eResponse() .
® The signature of Sol r Di spat chFi | t er. cr eat eCor eCont ai ner () has changed to take (Stri ng, P
roperties) arguments.
® Tika's runtime dependency of ‘jhighlight' was removed as the latter was found to contain some LGPL-only
code. Until that's resolved by Tika, you can download the jar yourself and place it under contri b/ extra
ction/lib.
® The _text catch-all field indata_dri ven_schenma_confi gs has beenrenamedto text
* A bug was introduced in Solr 4.10 that caused index time document boosts to trigger excessive
field boosts in multivalued fields -- the result being that some field norms might be excessively
large. This bug has now been fixed, but users of document boosts are strongly encouraged to
re-index. See SOLR-7335 for more details.
® Solr has internally been upgraded to use Jetty 9. See SOLR-4839 for full details, but there are a few key
details all Solr users should know when upgrading:
® Itis no longer possible to run "j ava -j ar start.jar"frominside the server directory. The bi n
/ sol r script is the only supported way to run Solr. This is nhecessary to support HTTP and HTTPS
modules in Jetty which can be selectively enabled by the bi n/ sol r scripts.
® The way SSL support is configured has been changed. Please refer to the Enabling SSL section in
the Solr Reference Guide for complete details.
®* Merge Policy's noCFSRat i 0 option is no longer set based on <useConpoundFi | e> element in the i nde
xConf i g section of sol rconfi g. xm . This means that Solr will start using Lucene's default for MP noC
FSRat i o. Other value can be set inside the <mer gePol i cy> elementin sol rconfi g. xm . See SOLR
-7463 for detalils.

For users upgrading from Solr 4.x, a summary of the significant changes can be found in the Major Changes
from Solr 4 to Solr 5 section.

Apache Solr Reference Guide 5.5 28

https://issues.apache.org/jira/browse/SOLR-8239
http://solr-7859/
https://issues.apache.org/jira/browse/SOLR-8307
https://issues.apache.org/jira/browse/SOLR-7335
https://issues.apache.org/jira/browse/SOLR-4839
https://issues.apache.org/jira/browse/SOLR-7463
https://issues.apache.org/jira/browse/SOLR-7463

Using the Solr Administration User Interface

This section discusses the Solr Administration User Interface ("Admin UI").

The Overview of the Solr Admin Ul explains the basic features of the user interface, what's on the initial Admin Ul

page and how to configure the interface. In addition, there are pages describing each screen of the Admin Ul:

® Getting Assistance shows you how to get more information about the Ul.

Logging explains the various logging levels available and how to invoke them.

Cloud Screens display information about nodes when running in SolrCloud mode.

Core Admin explains how to get management information about each core.

Java Properties shows the Java information about each core.

Thread Dump lets you see detailed information about each thread, along with state information.
Core-Specific Tools is a section explaining additional screens available for each named core.

Analysis - lets you analyze the data found in specific fields.

Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands
directly from the browser.

Files - shows the current core configuration files such as sol rconfi g. xm and scherma. xm .

Ping - lets you ping a named core and determine whether the core is active.

Plugins/Stats - shows statistics for plugins and other installed components.

Query - lets you submit a structured query about various elements of a core.

Replication - shows you the current replication status for the core, and lets you enable/disable
replication.

Schema Browser - displays schema data in a browser window.

Segments Info - Provides a visualization of the underlying Lucene index segments.

Overview of the Solr Admin Ul

Solr features a Web interface that makes it easy for Solr administrators and programmers to view Solr
configuration details, run queries and analyze document fields in order to fine-tune a Solr configuration and
access online documentation and other help.

W

Solr

. Dt board

vyl anae B hyles]

e - ey

Accessing the URL htt p: // host nanme: 8983/ sol r/ will show the main dashboard, which is divided into two

parts.

A left-side of the screen is a menu under the Solr logo that provides the navigation through the screens of the Ul.
The first set of links are for system-level information and configuration and provide access to Logging, Core

Admin and Java Properties, among other things. At the end of this information is a list of Solr cores configured

Apache Solr Reference Guide 5.5

29

Apache Solr Reference Guide 5.5

for this instance. Clicking on a core name shows a secondary menu of information and configuration options for
the core specifically. Items in this list include the Schema, Config, Plugins, and an ability to perform Queries on
indexed data.

The center of the screen shows the detail of the option selected. This may include a sub-navigation for the option
or text or graphical representation of the requested data. See the sections in this guide for each screen for more
details.

Under the covers, the Solr Admin Ul re-uses the same HTTP APIs available to all clients to access Solr-related
data to drive an external interface.

@ The path to the Solr Admin Ul given above is htt p: / / host name: port/ sol r, which redirectsto ht t p
: /1 host name: port/sol r/#/ inthe current version. A convenience redirect is also supported, so
simply accessing the Admin Ul at ht t p: / / host nane: port/ will also redirect to htt p: // host nane:
port/solr/# .

Configuring the Admin Ul in sol r confi g. xm

You can configure the Solr Admin Ul by editing the file sol r confi g. xm .

The <admi n> block in the sol rconfi g. xm file determines the default query to be displayed in the Query
section of the core-specific pages. The default is *: *, which is to find all documents. In this example, we have
changed the default to the term sol r.

<adm n>
<def aul t Query>sol r </ def aul t Query>
</ adm n>
Related Topics

® Configuring solrconfig.xml

Getting Assistance

At the bottom of each screen of the Admin Ul is a set of links that can be used to get more assistance with
configuring and using Solr.

| Documentation ﬁ Issue Tracker E’L IRC Channel - Community farum L3 Solr Query Syntax

Assistance icons

These icons include the following links.
Link Description
Documentation Navigates to the Apache Solr documentation hosted on http://lucene.apache.org/solr/.

Issue Tracker Navigates to the JIRA issue tracking server for the Apache Solr project. This server resides
at http://issues.apache.org/jira/browse/SOLR.

30

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR

IRC Channel
ki.apache.org/solr/IRCChannels.

Navigates to an Apache Wiki page describing how to join Solr's IRClive-chat room: https://wi

Community Navigates to the Apache Solr web page http://lucene.apache.org/solr/resources.html#comm
forum unity which has further information about ways to engage.

Solr Query Navigates to the section "Query Syntax and Parsing" in this reference guide.

Syntax

These links cannot be modified without editing the adm n. ht ml in the sol r. war that contains the Admin Ul

files.

Logging

The Logging page shows messages from Solr's log files.

When you click the link for "Logging", a page similar to the one below will be displayed:

7
S l _._;_l Logd| larg eHdpimpl. Leg djLogperFacteryl
O r Tirms [Local) Loval Logger Flesusgs
il Dashboard

WNZA01S, T:33:57 P WARN SoleCore | bechprodecty] Solr indes dasctory hameyhouumangtme i §-sorenshobysoir 5. 0 Ofsamplstec horodust ok Sec hproducts
Flatabin” i fard Crealeg Siw el

| Logging | 1127015, TMAE P BRSO SoCore on.apache sok.common Sokfooeption ERADR: |doc=test doc Wl unknown fald Boges feldrame’ |

2l

The Main Logging Screen, including an example of an error due to a bad document sent by a client

While this example shows logged messages for only one core, if you have multiple cores in a single instance,

they will each be listed, with the level for each.

Selecting a Logging Level

S l ‘r’,,é || Logdj (org.sifdj.impl.Log4jLoggerFactory)
O r I root ~ ALL
Jsolr ~ TRACE
& Dashboard org _ DEBUG
_ INFO
& e apache
- hadoop ~ WARN
43 Level - http ~ ERROR
_ FATAL
conn
& Core Admin ssl _ OFF
% Java Properties &~ AllowAllHostnameverifier UNSET
- i nuil
= Thread Dump i~ BrowserCompatHostnameVerifier
* StrictHostnameVerifier null
impl null
_ client null
i+ DefaultHttpClient null
i+ systemDefaultHttpClient nuil
conn null
i+ DefaultClientConnectionOperator null
* PoolingClientConnectionManager nuil
- solr null
- client null
solrj null
= impl null
HttpClientutil null

When you select the Level link on the left, you see the hierarchy of classpaths and classnames for your
instance. A row highlighted in yellow indicates that the class has logging capabilities. Click on a highlighted row,
and a menu will appear to allow you to change the log level for that class. Characters in boldface indicate that

Apache Solr Reference Guide 5.5 31

http://en.wikipedia.org/wiki/Internet_Relay_Chat
https://wiki.apache.org/solr/IRCChannels
https://wiki.apache.org/solr/IRCChannels
http://lucene.apache.org/solr/resources.html#community
http://lucene.apache.org/solr/resources.html#community

the class will not be affected by level changes to root.

For an explanation of the various logging levels, see Configuring Logging.

Cloud Screens

When running in SolrCloud mode, an option will appear in the Admin Ul between Logging and Core Admin for
Cloud. It's not possible at the current time to manage the nodes of the SolrCloud cluster from the Admin Ul, but

you can view them and open the Solr Admin Ul on each node to view the status and statistics for the node and
each core on each node.

(i) Only Visible When using SolrCloud
The "Cloud" menu option is only available on Solr instances running in SolrCloud mode. Single node or
master/slave replication instances of Solr will not display this option.

Click on the Cloud option in the left-hand navigation, and a small sub-menu appears with options called "Tree",
"Graph", "Graph (Radial)" and "Dump". The default view ("Graph™) shows a graph of each collection, the shards
that make up those collections, and the addresses of each replica for each shard. This example shows the very

simple two-node, two-shard, two-replica cluster you can get running the "bi n/ sol r -e cl oud" example:

J”’ shardl
Solr=

shard2

& Dashboard
(&) Legging

= Cloud

a_*

= ® Leader
QO Active
EE Core Admin

A Java Properties

©Q Recovery Failed
= Thread Dump

The "Graph (Radial)" option provides a different visual view of each node. Using the same example cluster, the
radial graph view looks like:

”

Solr~

& Dashboard
(& Logging

== Cloud

A .
! % Graph (Radial) |

shard2 shardl
*

= Core Admin L]

~ Java Properties

gettingstarted

= Thread Dump

. ® Leader
O Active

O Recovery Failed

Apache Solr Reference Guide 5.5 32

The "Tree" option shows a directory structure of the files in ZooKeeper, including cl ust er st at e. j son,
configuration files, and other status and information files. In this example, we show the leader definition for
"shardl" in the "gettingstarted” collection:

""_,4 E i £ version (1]
Solr d |] faliases.json aversion 0

|| jelusterstate.json

children_count 1]
* Lufeollections 1 F 09 23:07:04 UTC 2015 (1420844824550)
ctime ri Jan :07:
& Dashboard . [gettingstarted]
& Logging - | leader_elect cversion 0
! leaders czxid 112
Cloud o
== o i |] shardl ephemeralOowner 93116484291002370
£ Tree “ [] shard2 mtime FriJan 09 23:07:04 UTC 2015 (1420844824550)
A, o |y fconfigs mzxid 112
. |y flive_nodes pad o
- - Ly foverseer
datalLength 124
e ;" |y foverseer_elect
* || fzookeeper (
& Core Admin "core":"gettingstarted_shardl_replica2",
2 Java Properties "node_name":"127.0.1.1:7574_solr",

"base_url":"http://127.0.1.1:7574/s01r"}
= Thread Dump

The final option is "Dump”, which allows you to download an XML file with all the ZooKeeper configuration files.

Core Admin

The Core Admin screen lets you manage your cores.

The buttons at the top of the screen let you add a new core, unload the core displayed, rename the currently
displayed core, swap the existing core with one that you specify in a drop-down box, reload the current core, and
optimize the current core.

The main display and available actions correspond to the commands used with the CoreAdminHandler, but
provide another way of working with your cores.

S J’J,é Add Core =j Rename | J& Swap @ Reload # Optimize
olr-
techproducts] Core
4 Dashboard startTime: 2015-01-09T19:02:53.66Z
(=} Logging instanceDir: fhome/hossman/tmp/solr-5-screenshots/solr-5.0.0/exampleftechproducts/solrftechproducts/
@Com Mmln dataDir: fhomeyhossman/tmpy/selr-5-screenshots/selr-5.0.0/exampleftechpreducts/solrftechproducts/data/
3 Java Properties il Index
= Thread Dump ;
lastModified: about 2 hours ago
. version: 3
numDocs: 32
maxDoc: 57
deletedDocs:
optimized: «
current: <
directory: org.apache.lucene.store.NRTCachingDirectory:NRTCachingDirectory(MMapDirectory@/home/hossman/tmp/solr-
5-screenshots/solr-5.0.0/example/techproducts/solr/techpreducts/data/index
lockFactory=org.apache.lucene.store.NativeFSLockFactory@5672b5b8; maxCacheMB=48.0
maxMergeSizeMB=4.0)

Java Properties

Apache Solr Reference Guide 5.5 33

The Java Properties screen provides easy access to one of the most essential components of a top-performing
Solr systems. With the Java Properties screen, you can see all the properties of the JVM running Solr, including
the class paths, file encodings, JVM memory settings, operating system, and more.

'-’,‘,é STOPKEY solrrocks
SOLr - STOP.PORT 7983

awt.toolkit sun.awt.X11.XToolkit
& Dashboard file.encoding UTF-8
& Logging file.encoding.pkg sun.io
file.separator 7
B Core Admin | java.awt.graphicsenv sun.awt.X11GraphicsEnvironment
{ [l Java Properties | java.awt printerjob sun.print.PSPrinterjob
& Thread Dump java.class.path /homefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/resources

homefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/lib/serviet-api-3.0.jar
/homefhossman/tmp/solr-5-screenshots/solr-5.0.0/server;libfjetty-continuation-8.1.10.v20130312.jar
/homefhossman/tmpjsolr-5-screenshots/solr-5.0.0/server/libfjetty-security-8.1.10.v20130312 jar
Jhomefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/lib/jetty-webapp-8.1.10.v20130312 jar
Jhomefhossman/tmpjsolr-5-screenshots/solr-5.0.0/server/libjext/icl-over-sifdj-1.7.6.jar
Jhomefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/libfext/log4j-1.2.17 jar
Jhomefhossman/tmpjsolr-5-screenshotssolr-5.0.0/server/libfext/slf4j-log4j12-1.7.6.jar

Jhomefhossman/tmp/solr-5-screenshots/solr-5.0.0/server/lib/jetty-io-8.1.10.v20130312. jar

java.class.version 51.0

Thread Dump

The Thread Dump screen lets you inspect the currently active threads on your server. Each thread is listed and
access to the stacktraces is available where applicable. Icons to the left indicate the state of the thread: for
example, threads with a green check-mark in a green circle are in a "RUNNABLE" state. On the right of the
thread name, a down-arrow means you can expand to see the stacktrace for that thread.

"’;’é & Show all Stacktraces
SO lr name cpuTime [userTime

T commitScheduler-8-thread-1 (29) @ 0.3103ms
@ Dashboard L4 0.0000ms
(&3 Logging . searcherExecutor-6-thread-1 (27) & 38.0787ms
- 30.0000ms

& Core Admin .
@ DestroyjavaVM (23) 2020.5950ms

| Java Properties 1950.0000ms

i Thread Dump [Thread-13 (22) & 0.0970ms
+ 0.0000ms

- . HashSessionScavenger-0 (21) & 29.4284ms
+ 20.0000ms

@ qtp173131267-20 (20) B 143.2904ms
120.0000ms

i qtp173131267-19 (19) © 54.0277ms

+ 40.0000ms

7 qtp173131267-18 (18) @ 76.7345ms

+ 60.0000ms

L qtp173131267-17 (17) & 1282.0770ms

+ 1250.0000ms

I qtp173131267-16 (16) @ 294.3809ms

+ 270.0000ms

When you move your cursor over a thread name, a box floats over the name with the state for that thread.
Thread states can be:

State Meaning
NEW A thread that has not yet started.
RUNNABLE A thread executing in the Java virtual machine.

BLOCKED A thread that is blocked waiting for a monitor lock.

Apache Solr Reference Guide 5.5 34

WAITING A thread that is waiting indefinitely for another thread to perform a particular action.

TIMED_WAITING A thread that is waiting for another thread to perform an action for up to a specified
waiting time.

TERMINATED A thread that has exited.

When you click on one of the threads that can be expanded, you'll see the stacktrace, as in the example below:

‘f’_,é = Show all Stacktraces
f ;O [r name cpuTime / userTime
T commitScheduler-8-thread-1 (29) @ 0.3103ms
@ Dashboard + 0.0000ms
(&) Logging i searcherExecutor-6-thread-1 (27) & 38.0787ms
£l 30.0000ms

=f Core Admin

« sun.misc.Unsafe.park(Native Method)

+ java.util.concurrent.locks.LockSupport.park(LockSupport.java: 186)

. : Thread Dump #» java.util.concurrent.locks.AbstractQueuedSynchronizer$ ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
« java.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue.java:442})

« java.util.concurrent. ThreadPoolExecutor.getTask(ThreadPoolExecutor.java: 1068)

+ java.util.concurrent. ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java: 1130}

+ java.util.concurrent. Thread PeolExecutorsWorker.run{ThreadPoolExecutor.java:615)
 java.lang.Thread.run(Thread.java:745)

_ Java Properties

@ DestroyjavavM (23) 2020.5950ms
1950.0000ms

T Thread-13 (22) ® 0.0970ms
< 0.0000ms

Inspecting a thread

You can also check the Show all Stacktraces button to automatically enable expansion for all threads.

Core-Specific Tools

In the left-hand navigation bar, you will see a pull-down menu titled "Core Selector". Clicking on the menu will
show a list of Solr cores, with a search box that can be used to find a specific core (handy if you have a lot of
cores). When you select a core, a secondary menu opens under the core name with the administration options
available for that particular core.

After selecting the core, the central part of the screen shows Statistics and other information about the core you
chose. You can define a file called adni n- extra. ht m that includes links or other information you would like to
display in the "Admin Extra" part of this main screen.

On the left side, under the core name, are links to other screens that display information or provide options for
the specific core chosen. The core-specific options are listed below, with a link to the section of this Guide to find
out more:

Analysis - lets you analyze the data found in specific fields.

Dataimport - shows you information about the current status of the Data Import Handler.

Documents - provides a simple form allowing you to execute various Solr indexing commands directly
from the browser.

Files - shows the current core configuration files such as sol rconfi g. xm and schema. xnl .

Ping - lets you ping a named core and determine whether the core is active.

Plugins/Stats - shows statistics for plugins and other installed components.

Query - lets you submit a structured query about various elements of a core.

Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema Browser - displays schema data in a browser window.

Segments Info - Provides a visualization of the underlying Lucene index segments.

Apache Solr Reference Guide 5.5 35

Analysis Screen

The Analysis screen lets you inspect how data will be handled according to the field, field type and dynamic rule
configurations found in schema. xm . You can analyze how content would be handled during indexing or during
query processing and view the results separately or at the same time. Ideally, you would want content to be

handled consistently, and this screen allows you to validate the settings in the field type or field analysis chains.

Enter content in one or both boxes at the top of the screen, and then choose the field or field type definitions to
use for analysis.

‘f",!‘ Field value (Index) Field value {Query)

SO [r = Running is a Sport running sport

& Dashboard

[Logging Analyse Fieldname / FieldType: | "X8" @ T Analyse Values

=F Core Admin

%/ Java Properties Running | is a | Spert running | sport
Thread Dump Running Sport running = spert
running sport running | sport

techproducts b . .
running sport running = sport

A . .
LY running sport running = sport
37 CNElES run sport running = sport
- run sport

L

If you click the Verbose Output check box, you see more information, including transformations to the input
(such as, convert to lower case, strip extra characters, etc.) and the bytes, type and detailed position information.
The information displayed will vary depending on the settings of the field or field type. Each step of the process is
displayed in a separate section, with an abbreviation for the tokenizer or filter that is applied in that step. Hover or
click on the abbreviation, and you'll see the name and path of the tokenizer or filter.

4”!)‘ Field Value (Index) Field Value (Query)
Solr = Running is a Sport running sport
@ Dashboard
(£ Logging Analyse Fieldname / FieldType: | ‘€Xt-€n MNG) -
& core Admin
2 Java properties Running is a Sport running sport
(5275626269 6e67] | [6973] (611 [53706F7274] (7275626269 6e67] | [73706f7274]
= Thread Dump 0 8 1 13 0 8
7 10 12 18 7 13
techproducts v N 1 N 1 N N
-~ <ALPHANUM> <ALPHANUM> | <ALPHANUM> | <ALPHANUM> <ALPHANUM> <ALPHANUM>
- 1 2 3 4 1 2
F Analysis
Running Sport running sport
- (52 75 6262 69 6e 671 [53706F7274] (7275606269 6e67] | [73706f7274]
@ 0 13 0 8
) 7 18 7 13
= 1 1 1 1
<ALPHANUM> <ALPHANUM> <ALPHANUM> <ALPHANUM>
& 1 4 1 2
£
running sport running sport
[72 75 6e6e 69 62671 [73706f72741 [72756e6e606267] | [13706f7274]
[I5] 0 13 0 8
7 18 7 13
1 1 1 1
<ALPHANUM> <ALPHANUM> <ALPHANUM> <ALPHANUM>
1 4 1 2

In example screenshot above, several transformations are applied to the input "Running is a sport." The words
"is" and "a" have been removed and the word "running" has been changed to its basic form, "run". This is
because we are using the field type t ext _en in this scenario, which is configured to remove stop words (small
words that usually do not provide a great deal of context) and "stem" terms when possible to find more possible
matches (this is particularly helpful with plural forms of words). If you click the question mark next to the Analyze
Fieldname/Field Type pull-down menu, the Schema Browser window will open, showing you the settings for the
field specified.

The section Understanding Analyzers, Tokenizers, and Filters describes in detail what each option is and how it

Apache Solr Reference Guide 5.5 36

may transform your data and the section Running Your Analyzer has specific examples for using the Analysis
screen.

Dataimport Screen

The Dataimport screen shows the configuration of the DatalmportHandler (DIH) and allows you start, and
monitor the status of, import commands as defined by the options selected on the screen and defined in the
configuration file.

"”é @ /dataimport
f)O[r & Indexing ... Abort Import
Command Requests: 1, Fetched: 3, Skipped: 0, Processed: 2
fulkimport j Started: less than a minute ago
& Dashboard
O verbose
(2 Logging Clean & Raw Status-Output
& Core Admin Commit I
%) Java Properties [optimize “responseHeader”: {
o *status": 0,
£ Thread Dump Debug *QTine’: 0
Entity)
— - j “initArgs": [
Start, Rows *defaults.
& [
'
_ “config",
i "rss-data-config.xml®
£] Dataimport Custom Parameters !
_ _ 1.
- “command" : *status’.
) 8 Exccute “status®: “busy”,
= “inportResponse”: ‘A command is still ruming...",
“ N "statusHessages”: {
& *Time Elapsed”: "0:0:0.356",
*Total Requests made to DataSource’: "1°,
£
= *Total Rows Fetched': "3,
*Total Documents Processed”: '2°,
= *Total Docunents Skipped': "G'.
“Full Dump Started": "2015-01-09 23:40:17"
}
T

This screen also lets you adjust various options to control how the data is imported to Solr, and view the data
import configuration file that controls the import. For more information about data importing with DIH, see the
section on Uploading Structured Data Store Data with the Data Import Handler.

Documents Screen

The Documents screen provides a simple form allowing you to execute various Solr indexing commands in a
variety of formats directly from the browser.

:

Sol

The screen allows you to:

® Copy documents in JSON, CSV or XML and submit them to the index
® Upload documents (in JSON, CSV or XML)

Apache Solr Reference Guide 5.5

37

® Construct documents by selecting fields and field values

The first step is to define the RequestHandler to use (aka, 'qt"). By default / updat e will be defined. To use Solr
Cell, for example, change the request handler to / updat e/ extr act .

Then choose the Document Type to define the type of document to load. The remaining parameters will change
depending on the document type selected.

JSON

When using the JSON document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper JSON format.

Then you can choose when documents should be added to the index (Commit Within), whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped), and, finally, if a document boost should be applied.

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command opti
on.

CSV

When using the CSV document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper CSV format, with columns delimited and one row per document.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped).

Document Builder

The Document Builder provides a wizard-like interface to enter fields of a document

File Upload

The File Upload option allows choosing a prepared file and uploading it. If using only / updat e for the
Request-Handler option, you will be limited to XML, CSV, and JSON.

However, to use the ExtractingRequestHandler (aka Solr Cell), you can modify the Request-Handler to / updat e
/ ext ract . You must have this defined in your sol rconfi g. xm file, with your desired defaults. You should
also update the &l i t er al . i d shown in the Extracting Req. Handler Params so the file chosen is given a
unique id.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped).

Solr Command

The Solr Command option allows you use XML or JSON to perform specific actions on documents, such as
defining documents to be added or deleted, updating only certain fields of documents, or commit and optimize
commands on the index.

The documents should be structured as they would be if using / updat e on the command line.

XML

When using the XML document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The

Apache Solr Reference Guide 5.5 38

document structure should still be in proper Solr XML format, with each document separated by <doc> tags and
each field defined.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not true, then the incoming
documents will be dropped).

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command opti
on.

Related Topics

® Uploading Data with Index Handlers
® Uploading Data with Solr Cell using Apache Tika

Files Screen

The Files screen lets you browse & view the various configuration files (such sol r confi g. xm and schenma. x
m) for the core you selected.

.fﬂ_?é

Solr

While sol rconfi g. xm defines the behaviour of Solr as it indexes content and responds to queries, the schem
a. xn allows you to define the types of data in your content (field types), the fields your documents will be
broken into, and any dynamic fields that should be generated based on patterns of field names in the incoming
documents. Any other configuration files are used depending on how they are referenced in either sol rconfi g
.xm orschema. xm .

Configuration files cannot be edited with this screen, so a text editor of some kind must be used.

This screen is related to the Schema Browser Screen, in that they both can display information from the schema,
but the Schema Browser provides a way to drill into the analysis chain and displays linkages between field types,
fields, and dynamic field rules.

Many of the options defined in sol r confi g. xm and schena. xm are described throughout the rest of this
Guide. In particular, you will want to review these sections:

Indexing and Basic Data Operations
Searching
The Well-Configured Solr Instance

[]
[]
[]
® Documents, Fields, and Schema Design

Apache Solr Reference Guide 5.5 39

Ping
Choosing Ping under a core name issues a pi ng request to check whether a server is up.

Ping is configured using a r equest Handl er inthe sol rconfi g. xn file:

<!-- ping/heal thcheck -->
<request Handl er nanme="/adm n/ pi ng" cl ass="sol r. Pi ngRequest Handl er " >
<l st name="invariants">
<str name="q">sol r pi ngquery</str>
</[lst>
<l st name="defaul ts">
<str name="echoParans">al | </str>
</l|st>
<!-- An optional feature of the PingRequestHandler is to configure the
handl er with a "heal thcheckFile" which can be used to enabl e/ di sabl e
t he Pi ngRequest Handl er.
relative paths are resolved against the data dir
oo D
<!-- <str nanme="heal t hcheckFil e">server-enabl ed. txt</str> -->
</ request Handl er >

The Ping option doesn't open a page, but the status of the request can be seen on the core overview page
shown when clicking on a collection name. The length of time the request has taken is displayed next to the Ping
option, in milliseconds.

Examples

Input:

http:// 1 ocal host: 8983/ sol r/ <cor e- nanme>/ adm n/ pi ng

This command will ping the core name for a response.

Input:

http://1ocal host: 8983/ sol r/ <col | ecti on- nane>adm n/ pi ng?wt =j son&di stri b=true& ndent =t
rue

This command will ping all replicas of the given collection name for a response

Sample Output:

Apache Solr Reference Guide 5.5 40

<response>
<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qri me">13</int>
<l st nanme="parans">

<str name="q">{!lucene}*: *</str>
<str name="di strib">fal se</str>
<str name="df"> text </str>
<str nanme="rows">10</str>
<str nanme="echoParans">al | </str>
</|st>
</|st>
<str nanme="status">0K</str>

</ response>

Both API calls have the same output. A status=OK indicates that the nodes are responding.

SolrJ Example:

Sol r Pi ng pi ng

= new

Sol rPi ng();

pi ng. get Parans().add("di strib", "true");

a collection

rsp = ping.process(solrdient,

int status = rsp.getStatus();

Plugins & Stats Screen

The Plugins screen shows information and statistics about Solr's status and performance. You can find
information about the performance of Solr's caches, the state of Solr's searchers, and the configuration of

searchHandlers and requestHandlers.

/1 To make it a distributed request

col | ecti onNan®) ;

Choose an area of interest on the right, and then drill down into more specifics by clicking on one of the names
that appear in the central part of the window. In this example, we've chosen to look at the Searcher stats, from

the Core area:

iy r
- o coRE

U

Apache Solr Reference Guide 5.5

Lapr P @edsdb L 1M echprodein] mae

cosrw

nar b

41

Searcher Statistics

The display is a snapshot taken when the page is loaded. You can get updated status by choosing to either Wat
ch Changes or Refresh Values. Watching the changes will highlight those areas that have changed, while
refreshing the values will reload the page with updated information.

Query Screen

You can use Query, shown under the name of each core, to submit a search query to a Solr server and analyze
the results. In the example in the screenshot, a query has been submitted, and the screen shows the query
results sent to the browser as JSON.

S Ij‘j% Request-Handler (qt) =
(- fselect
{

common *responseHeader*: {
@ Dashboard a "5'?1"5“ Q.
"qQTime": 1,
{2 Logging “parans®: {
i

& Core Admin

"1 *1420841067445",

q
Java Properties fq .
"wt": “json”

Thread Dump)
H
techproducts ~ ~ “response’: {
start, rows “nunFound*: 33,
“start*: o,
"docs": |
fl 1
*id": "GE18030TEST",
“name*: "Test with some GB18030 encoded characters®,

sort

@M -

df

Raw Query Parameters
"This is a feature (translated)”,
"RAREZRELE",
Query wt “This document is very shiny (translated)”
json | B
indent (pricet: 0.
[15] "price_c*: "0.0,UsD",
[debugQuery "inStock”: true,
*_version_": 1489848420687413200
[dismax 3.

The query was sent to a core named "techproducts". We used Solr's default query for this screen (as defined in s
ol rconfi g. xm), which is *: *. This query will find all records in the index for this core. We kept the other
defaults, but the table below explains these options, which are also covered in detail in later parts of this Guide.

The response is shown to the right of the form. Requests to Solr are simply HTTP requests, and the query
submitted is shown in light type above the results; if you click on this it will open a new browser window with just
this request and response (without the rest of the Solr Admin Ul). The rest of the response is shown in JSON,
which is part of the request (see the wt =j son part at the end).

The response has at least two sections, but may have several more depending on the options chosen. The two
sections it always has are the r esponseHeader and the r esponse. The r esponseHeader includes the status
of the search (st at us), the processing time (QTi ne), and the parameters (par ans) that were used to process
the query.

The r esponse includes the documents that matched the query, in doc sub-sections. The fields return depend
on the parameters of the query (and the defaults of the request handler used). The number of results is also
included in this section.

This screen allows you to experiment with different query options, and inspect how your documents were
indexed. The query parameters available on the form are some basic options that most users want to have
available, but there are dozens more available which could be simply added to the basic request by hand (if
opened in a browser). The table below explains the parameters available:

Field Description

Request-handler Specifies the query handler for the request. If a query handler is not specified, Solr
(qt) processes the response with the standard query handler.

Apache Solr Reference Guide 5.5 42

fq

sort

start, rows

fl

indent

debugQuery

dismax

edismax

hl

facet

spatial

spellcheck

The query event. See Searching for an explanation of this parameter.
The filter queries. See Common Query Parameters for more information on this parameter.

Sorts the response to a query in either ascending or descending order based on the
response's score or another specified characteristic.

st art is the offset into the query result starting at which documents should be returned.

The default value is 0, meaning that the query should return results starting with the first

document that matches. This field accepts the same syntax as the start query parameter,
which is described in Searching. r ows is the number of rows to return.

Defines the fields to return for each document. You can explicitly list the stored fields, functi
ons, and doc transformers you want to have returned by separating them with either a
comma or a space.

Specifies the Response Writer to be used to format the query response. Defaults to XML if
not specified.

Click this button to request that the Response Writer use indentation to make the
responses more readable.

Click this button to augment the query response with debugging information, including
"explain info" for each document returned. This debugging information is intended to be
intelligible to the administrator or programmer.

Click this button to enable the Dismax query parser. See The DisMax Query Parser for
further information.

Click this button to enable the Extended query parser. See The Extended DisMax Query
Parser for further information.

Click this button to enable highlighting in the query response. See Highlighting for more
information.

Enables faceting, the arrangement of search results into categories based on indexed
terms. See Faceting for more information.

Click to enable using location data for use in spatial or geospatial searches. See Spatial
Search for more information.

Click this button to enable the Spellchecker, which provides inline query suggestions based
on other, similar, terms. See Spell Checking for more information.

Related Topics

® Searching

Replication Screen

The Replication screen shows you the current replication state for the named core you have specified. SolrCloud
has supplanted much of this functionality, but if you are still using Master-Slave index replication, you can use
this screen to:

1. View the replicatable index state. (on a master node)
2. View the current replication status (on a slave node)

Apache Solr Reference Guide 5.5 43

3. Disable replication. (on a master node)

1, Caution When Using SolrCloud
When using SolrCloud, do not attempt to disable replication via this screen.

More details on how to configure replication is available in the section called Index Replication.

Schema Browser Screen

The Schema Browser screen lets you see schema data in a browser window. If you have accessed this window
from the Analysis screen, it will be opened to a specific field, dynamic field rule or field type. If there is nothing
chosen, use the pull-down menu to choose the field or field type.

"",!4 text ~ | Field: text
Solr=
Field-Type: org.apache.solr.schema. TextField
Field PG y'p lE)gO ’
text DD(SVP' 22
& Dashboard Copied from .
& Logging author Indexed Tokenized Multivalued
cat Properties « L' v
& Core Admin content Schems v I v

% Java Properties Index
£ Thread Dump

(@ Index Analyzer: org.apache.solr.analysis. TokenizerChain &

echproducts v
@ Query Analyzer: org.apache.solr.analysis. TokenizerChain &

@ Load Term Info; 10 TopTerms: () Histogram:

; electronics 292
inc 2
- and 27

= usb P
= led 1
notes
& 2.0
memory
one

x

|-/schema Browser

The screen provides a great deal of useful information about each particular field. In the example above, we
have chosen the t ext field. On the right side of the center window, we see the field name, and a list of fields that
populate this field because they are defined to be copied to the t ext field. Click on one of those field names,
and you can see the definitions for that field. We can also see the field type, which would allow us to inspect the
type definitions as well.

In the left part of the center window, we see the field type again, and the defined properties for the field. We can
also see how many documents have populated this field. Then we see the analyzer used for indexing and query
processing. Click the icon to the left of either of those, and you'll see the definitions for the tokenizers and/or
filters that are used. The output of these processes is the information you see when testing how content is
handled for a particular field with the Analysis Screen.

Under the analyzer information is a button to Load Term Info. Clicking that button will show the top N terms that
are in the index for that field. Click on a term, and you will be taken to the Query Screen to see the results of a
query of that term in that field. If you want to always see the term information for a field, choose Autoload and it
will always appear when there are terms for a field. A histogram shows the number of terms with a given
frequency in the field.

Segments Info

The Segments Info screen lets you see a visualization of the various segments in the underlying Lucene index,
with information about the size of each segment — both bytes and in number of documents — as well as other
basic metadata about those segments, notably the number of deleted documents.

.
Solr~*

Apache Solr Reference Guide 5.5 44

This information may be useful for people to help make decisions about the optimal merge settings for their data.

Apache Solr Reference Guide 5.5

45

https://cwiki.apache.org/confluence/display/solr/IndexConfig+in+SolrConfig#IndexConfiginSolrConfig-MergingIndexSegments

Documents, Fields, and Schema Design

This section discusses how Solr organizes its data into documents and fields, as well as how to work with a
schema in Solr.

This section includes the following topics:
Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the default Solr
schema.

Defining Fields: Describes how to define fields in Solr.
Copying Fields: Describes how to populate fields with data copied from another field.

Dynamic Fields: Information about using dynamic fields in order to catch and index fields that do not exactly
conform to other field definitions in your schema.

Schema API: Use curl commands to read various parts of a schema or create new fields and copyField rules.
Other Schema Elements: Describes other important elements in the Solr schema.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work together.
DocValues: Describes how to create a docValues index for faster lookups.

Schemaless Mode: Automatically add previously unknown schema fields using value-based field type guessing.

Overview of Documents, Fields, and Schema Design

The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it questions
and find the piece of information you want. The part where you feed in all the information is called indexing or up
dating. When you ask a question, it's called a query.

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you add a recipe to
the book, you update the index at the back. You list each ingredient and the page number of the recipe you just
added. Suppose you add one hundred recipes. Using the index, you can very quickly find all the recipes that use
garbanzo beans, or artichokes, or coffee, as an ingredient. Using the index is much faster than looking through
each recipe one by one. Imagine a book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above shows how to
build an index with just one field, i ngr edi ent s. You could have other fields in the index for the recipe's cooking
style, like Asi an, Caj un, or vegan, and you could have an index field for preparation times. Solr can answer
questions like "What Cajun-style recipes that have blood oranges as an ingredient can be prepared in fewer than
30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a document, which is a set of data that describes something. A recipe document
would contain the ingredients, the instructions, the preparation time, the cooking time, the tools needed, and so
on. A document about a person, for example, might contain the person's name, biography, favorite color, and
shoe size. A document about a book could contain the title, author, year of publication, number of pages, and so
on.

Apache Solr Reference Guide 5.5 46

In the Solr universe, documents are composed of fields, which are more specific pieces of information. Shoe size
could be a field. First name and last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A shoe size field
might be a floating point number so that it could contain values like 6 and 9.5. Obviously, the definition of fields is
flexible (you could define a shoe size field as a text field rather than a floating point number, for example), but if
you define your fields correctly, Solr will be able to interpret them correctly and your users will get better results
when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its field type. The field type tells Solr how to
interpret the field and how it can be queried.

When you add a document, Solr takes the information in the document's fields and adds that information to an
index. When you perform a query, Solr can quickly consult the index and return the matching documents.

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate name for this
process would be processing or even digestion, but the official name is analysis.

Consider, for example, a biography field in a person document. Every word of the biography must be indexed so
that you can quickly find people whose lives have had anything to do with ketchup, or dragonflies, or

cryptography.

However, a biography will likely contains lots of words you don't care about and don't want clogging up your
index—words like "the", "a", "to", and so forth. Furthermore, suppose the biography contains the word "Ketchup",
capitalized at the beginning of a sentence. If a user makes a query for "ketchup", you want Solr to tell you about
the person even though the biography contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how to break apart
the biography into words. You can tell Solr that you want to make all the words lower case, and you can tell Solr
to remove accents marks.

Field analysis is an important part of a field type. Understanding Analyzers, Tokenizers, and Filters is a detailed
description of field analysis.

Solr's Schema File

Solr stores details about the field types and fields it is expected to understand in a schema file. The name and
location of this file may vary depending on how you initially configured Solr or if you modified it later.

®* schema. xnl is the traditional name for the schema file and the schema is still mostly referred to by this
name throughout this Guide.

®* managed- schena is the name for the schema file if Solr's managed schema feature has been enabled.
This feature allows you to interact with the schema via the Schema API. This feature allows for other
names to be used instead if you choose. However, if you started Solr from one of the example
configurations, you will likely see this name in use.

® |f you are using SolrCloud you may not be able to find any file by these names on the local filesystem.
You will only be able to see the schema through the Schema API (if enabled) or through the Solr Admin
Ul's Cloud Screens.

Whichever name of the file is being used in your installation, the structure of the file is not changed. However, the
way you interact with the file will change. If you are using the managed schema, it is expected that you only
interact with the file with the Schema API, and never make manual edits. If you do not use the managed schema,
it is expected that you never use the Schema API and only make manual edits.

Note that if you are not using the Schema API yet you do use SolrCloud, you will need to interact with schena. x
m through ZooKeeper using upconfig and downconfig commands to make a local copy and upload your
changes. The options for doing this are described in Solr Start Script Reference and Using ZooKeeper to

Apache Solr Reference Guide 5.5 47

Manage Configuration Files.

Solr Field Types

The field type defines how Solr should interpret data in a field and how the field can be queried. There are many
field types included with Solr by default, and they can also be defined locally.

Topics covered in this section:
® Field Type Definitions and Properties
®* Field Types Included with Solr
® Working with Currencies and Exchange Rates
® Working with Dates
® Working with Enum Fields
® Working with External Files and Processes

® Field Properties by Use Case

Related Topics

® SchemaXML-DataTypes
® FieldType Javadoc

Field Type Definitions and Properties

A field type definition can include four types of information:

The name of the field type (mandatory)

An implementation class name (mandatory)

If the field type is Text Fi el d, a description of the field analysis for the field type

Field type properties - depending on the implementation class, some properties may be mandatory.

Field Type Definitions in schema. xni

Field types are defined in schena. xni . Each field type is defined between f i el dType elements. They can
optionally be grouped within a t ypes element. Here is an example of a field type definition for a type called t ex
t _general :

Apache Solr Reference Guide 5.5 48

http://wiki.apache.org/solr/SchemaXml#Data_Types
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/schema/FieldType.html

<fiel dType nane="text _general" class="solr. TextFi el d" positionlncrenent Gap="100">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
/>
<I-- in this exanple, we will only use synonyns at query tine
<filter class="solr.SynonynFilterFactory" synonyns="index_synonymns.txt"
i gnoreCase="true" expand="fal se"/>
oo
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
/>
<filter class="solr.SynonynFilterFactory" synonyns="synonymns.txt"
i gnoreCase="true" expand="true"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The first line in the example above contains the field type name, t ext _gener al , and the name of the
implementing class, sol r. Text Fi el d. The rest of the definition is about field analysis, described in Understand
ing Analyzers, Tokenizers, and Filters.

The implementing class is responsible for making sure the field is handled correctly. In the class names in schem
a. xm , the string sol r is shorthand for or g. apache. sol r. schena or or g. apache. sol r. anal ysi s.
Therefore, sol r. Text Fi el d is really or g. apache. sol r. schena. Text Fi el d. .

Field Type Properties

The field type cl ass determines most of the behavior of a field type, but optional properties can also be defined.
For example, the following definition of a date field type defines two properties, sort M ssi ngLast and oni t No
rns.

<fiel dType nane="date" class="solr. TrieDateFi el d"
sort M ssingLast="true" om tNornms="true"/>

The properties that can be specified for a given field type fall into three major categories:

® Properties specific to the field type's class.

® General Properties Solr supports for any field type.

® Field Default Properties that can be specified on the field type that will be inherited by fields that use this
type instead of the default behavior.

General Properties

Property Description Values

name The name of the fieldType. This value gets used in field definitions,
in the "type" attribute. It is strongly recommended that names consist
of alphanumeric or underscore characters only and not start with a
digit. This is not currently strictly enforced.

Apache Solr Reference Guide 5.5 49

class

positionincrementGap

autoGeneratePhraseQueries

docValuesFormat

postingsFormat

The class name that gets used to store and index the data for this
type. Note that you may prefix included class nhames with "solr." and
Solr will automatically figure out which packages to search for the
class - so "solr.TextField" will work. If you are using a third-party
class, you will probably need to have a fully qualified class name.
The fully qualified equivalent for "solr.TextField" is
"org.apache.solr.schema.TextField".

For multivalued fields, specifies a distance between multiple values,
which prevents spurious phrase matches

For text fields. If true, Solr automatically generates phrase queries for
adjacent terms. If false, terms must be enclosed in double-quotes to

be treated as phrases.

Defines a custom DocVal uesFor mat to use for fields of this type.
This requires that a schema-aware codec, such as the SchenaCode

cFact ory has been configured in solrconfig.xml.

Defines a custom Post i ngsFor mat to use for fields of this type.
This requires that a schema-aware codec, such as the SchenaCode

cFact ory has been configured in solrconfig.xml.

integer

true or
false

n/a

n/a

@ Lucene index back-compatibility is only supported for the default codec. If you choose to customize the p
ost i ngsFor mat or docVal uesFor mat in your schema.xml, upgrading to a future version of Solr may
require you to either switch back to the default codec and optimize your index to rewrite it into the default

codec before upgrading,

Field Default Properties

or re-build your entire index from scratch after upgrading.

These are properties that can be specified either on the field types, or on individual fields to override the values
provided by the field types. The default values for each property depend on the underlying Fi el dType class,
which in turn may depend on the ver si on attribute of the <schera/ >. The table below includes the default
value for most Fi el dType implementations provided by Solr, assuming a schema. xnl that declares ver si on

="1.6".

Property

indexed

stored

docValues

sortMissingFirst

sortMissingLast

multiValued

Apache Solr Reference Guide 5.5

Description Values
If true, the value of the field can be used in queries to true or
retrieve matching documents false
If true, the actual value of the field can be retrieved by true or
queries false
If true, the value of the field will be put in a column-oriented true or
DocValues structure false
Control the placement of documents when a sort field is not true or
present. false
If true, indicates that a single document might contain true or
multiple values for this field type false

Implicit
Default
true
true
false

false

false

50

omitNorms

omitTermFregAndPositions

omitPositions

termVectors
termPositions
termOffsets
termPayloads

required

useDocValuesAsStored

If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for the
field, and saves some memory). Defaults to true for all
primitive (non-analyzed) field types, such as int, float,
data, bool, and string. Only full-text fields or fields that
need an index-time boost need norms.

If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces the
storage space required for the index. Queries that rely on
position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all
field types that are not text fields.

Similar to oni t Ter nFr eqAndPosi t i ons but preserves
term frequency information

These options instruct Solr to maintain full term vectors for
each document, optionally including position, offset and
payload information for each term occurrence in those
vectors. These can be used to accelerate highlighting and
other ancillary functionality, but impose a substantial cost in
terms of index size. They are not necessary for typical uses
of Solr.

Instructs Solr to reject any attempts to add a document
which does not have a value for this field. This property
defaults to false.

If the field has docValues enabled, setting this to true would
allow the field to be returned as if it were a stored field (even
if it has st or ed=f al se) when matching "*" in an fl
parameter.

Field Types Included with Solr

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

false

false

true

The following table lists the field types that are available in Solr. The or g. apache. sol r. schenma package
includes all the classes listed in this table.

Class
BinaryField

BoolField

CollationField

CurrencyField

Apache Solr Reference Guide 5.5

Description

Binary data.

Contains either true or false. Values of "1", "t", or "T" in the first
character are interpreted as true. Any other values in the first character

are interpreted as false.

Supports Unicode collation for sorting and range queries.
ICUCollationField is a better choice if you can use ICU4J. See the

section Unicode Collation.

Supports currencies and exchange rates. See the section Working

with Currencies and Exchange Rates.

51

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation

DateRangeField

ExternalFileField

EnumField

ICUCollationField

LatLonType

PointType

PreAnalyzedField

RandomSortField

SpatialRecursivePrefixTreeFieldType

StrField
TextField

TrieDateField

TrieDoubleField

TrieField

Apache Solr Reference Guide 5.5

Supports indexing date ranges, to include point in time date instances
as well (single-millisecond durations). See the section Working with
Dates for more detail on using this field type. Consider using this field
type even if it's just for date instances, particularly when the queries
typically fall on UTC year/month/day/hour, etc., boundaries.

Pulls values from a file on disk. See the section Working with External
Files and Processes.

Allows defining an enumerated set of values which may not be easily
sorted by either alphabetic or numeric order (such as a list of
severities, for example). This field type takes a configuration file, which
lists the proper order of the field values. See the section Working with
Enum Fields for more information.

Supports Unicode collation for sorting and range queries. See the
section Unicode Collation.

Spatial Search: a latitude/longitude coordinate pair. The latitude is
specified first in the pair.

Spatial Search: An arbitrary n-dimensional point, useful for searching
sources such as blueprints or CAD drawings.

Provides a way to send to Solr serialized token streams, optionally
with independent stored values of a field, and have this information
stored and indexed without any additional text processing.
Configuration and usage of PreAnalyzedField is documented on the W
orking with External Files and Processes page.

Does not contain a value. Queries that sort on this field type will return
results in random order. Use a dynamic field to use this feature.

(RPT for short) Spatial Search: Accepts latitude comma longitude
strings or other shapes in WKT format.

String (UTF-8 encoded string or Unicode).
Text, usually multiple words or tokens.

Date field. Represents a point in time with millisecond precision. See
the section Working with Dates. pr eci si onSt ep="0" enables
efficient date sorting and minimizes index size; pr eci si onSt ep="8"
(the default) enables efficient range queries.

Double field (64-bit IEEE floating point). pr eci si onSt ep="0" enable
s efficient numeric sorting and minimizes index size; pr eci si onSt ep
="8" (the default) enables efficient range queries.

If this field type is used, a "type" attribute must also be specified, valid
values are: i nt eger, | ong, f| oat, doubl e, dat e. Using this field is
the same as using any of the Trie fields. pr eci si onSt ep="0" enabl
es efficient numeric sorting and minimizes index size; pr eci si onSt e
p="8" (the default) enables efficient range queries.

52

https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes#WorkingwithExternalFilesandProcesses-ThePreAnalyzedFieldType
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes#WorkingwithExternalFilesandProcesses-ThePreAnalyzedFieldType

TrieFloatField Floating point field (32-bit IEEE floating point). pr eci si onSt ep="0"
enables efficient numeric sorting and minimizes index size; pr eci si o
nSt ep="8" (the default) enables efficient range queries.

TrielntField Integer field (32-bit signed integer). pr eci si onSt ep="0" enables
efficient numeric sorting and minimizes index size; pr eci si onSt ep=
"8" (the default) enables efficient range queries.

TrieLongField Long field (64-bit signed integer). pr eci si onSt ep="0" enables
efficient numeric sorting and minimizes index size; pr eci si onSt ep=
"8" (the default) enables efficient range queries.

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and
Solr will create a new UUID. Note: configuring a UUIDField instance
with a default value of "NEW" is not advisable for most users when
using SolrCloud (and not possible if the UUID value is configured as
the unique key field) since the result will be that each replica of each
document will get a unique UUID value. Using
UUIDUpdateProcessorFactory to generate UUID values when
documents are added is recommended instead.

The Mul ti Ter mAwar eConponent has been added to relevant sol r. Text Fi el d entries in schema. xm (e.g.
, wildcards, regex, prefix, range, etc.) to allow automatic lowercasing for multi-term queries.

Further, you can optionally specify a multi-term analyzer in field types in your schema: <anal yzer
type="nul titernt>;if you don't do this, anal yzer will process the fields according to their specific
attributes.

Working with Currencies and Exchange Rates

The cur r ency FieldType provides support for monetary values to Solr/Lucene with query-time currency
conversion and exchange rates. The following features are supported:

Point queries

Range queries

Function range queries

Sorting

Currency parsing by either currency code or symbol

Symmetric & asymmetric exchange rates (asymmetric exchange rates are useful if there are fees
associated with exchanging the currency)

Configuring Currencies

The cur r ency field type is defined in schema. xm . This is the default configuration of this type:

<fi el dType nane="currency" class="solr.CurrencyFi el d" precisionStep="8"
defaul t Currency="USD" currencyConfig="currency.xm" />

In this example, we have defined the name and class of the field type, and defined the def aul t Curr ency as
"USD", for U.S. Dollars. We have also defined a cur r encyConf i g to use a file called "currency.xml". This is a
file of exchange rates between our default currency to other currencies. There is an alternate implementation that
would allow regular downloading of currency data. See Exchange Rates below for more.

At indexing time, money fields can be indexed in a native currency. For example, if a product on an e-commerce
site is listed in Euros, indexing the price field as "1000,EUR" will index it appropriately. The price should be

Apache Solr Reference Guide 5.5 53

separated from the currency by a comma, and the price must be encoded with a floating point value (a decimal
point).

During query processing, range and point queries are both supported.

Exchange Rates

You configure exchange rates by specifying a provider. Natively, two provider types are supported: Fi | eExchan
geRat eProvi der or OpenExchangeRat esOr gPr ovi der .

FileExchangeRateProvider

This provider requires you to provide a file of exchange rates. It is the default, meaning that to use this provider
you only need to specify the file path and name as a value for cur r encyConf i g in the definition for this type.

There is a sample cur rency. xm file included with Solr, found in the same directory as the schema. xm file.
Here is a small snippet from this file:

<currencyConfig version="1.0">
<rates>
<!-- Updated from http://ww. exchangerate.com at 2011-09-27 -->
<rate fron="USD' to="ARS" rate="4.333871" comment="ARGENTI NA Peso" />
<rate from="USD"' to="AUD"' rate="1.025768" comment="AUSTRALI A Dollar" />
<rate from="USD' to="EUR' rate="0.743676" comment="European Euro" />
<rate frone"USD' to="CAD' rate="1.030815" coment="CANADA Dol lar" />

<l-- Cross-rates for sonme commopn currencies -->
<rate fronF"EUR' to="GBP" rate="0.869914" />
<rate fronF"EUR' to="NOK" rate="7.800095" />
<rate frone"GBP" to="NOK" rate="8.966508" />

<l-- Asymetrical rates -->
<rate from"EUR' to="USD' rate="0.5" />
</rates>

</ currencyConfi g>

OpenExchangeRatesOrgProvider

You can configure Solr to download exchange rates from OpenExchangeRates.Org, with updates rates between
USD and 158 currencies hourly. These rates are symmetrical only.

In this case, you need to specify the pr ovi der C ass in the definitions for the field type. Here is an example:

<fiel dType nane="currency" class="solr.CurrencyFi el d* precisionStep="8"
provi der Cl ass="sol r. OpenExchangeRat esOr gPr ovi der"
refreshlnterval =" 60"

rat esFi | eLocati on="http://ww. openexchanger at es. org/ api /| atest.j son?app_i d=your Per so
nal Appl dkey"/ >

The r ef reshl nt er val is minutes, so the above example will download the newest rates every 60 minutes.
The refresh interval may be increased, but not decreased.

Working with Dates

Apache Solr Reference Guide 5.5 54

http://www.OpenExchangeRates.Org

Date Formatting

Solr's Tr i eDat eFi el d (and deprecated Dat eFi el d) represents a point in time with millisecond precision. The
format used is a restricted form of the canonical representation of dat eTi e in the XML Schema specification:

YYYY- MMt DDThh: mm ssZ

® YYYY is the year.

MMis the month.

DD is the day of the month.

hh is the hour of the day as on a 24-hour clock.

nmis minutes.

Ss is seconds.

Z is a literal 'Z' character indicating that this string representation of the date is in UTC

Note that no time zone can be specified; the String representations of dates is always expressed in Coordinated
Universal Time (UTC). Here is an example value:

1972-05-20T17: 33: 1872

You can optionally include fractional seconds if you wish, although any precision beyond milliseconds will be
ignored. Here are examples value with sub-seconds include:

® 1972-05-20T17: 33:18. 772Z
® 1972-05-20T17:33:18.77Z
® 1972-05-20T17:33:18.7Z

(D Query escaping may be required
As you can see, the date format includes colon characters separating the hours, minutes, and seconds.
Because the colon is a special character to Solr's most common query parsers, escaping is sometimes
required, depending on exactly what you are trying to do.

This is normally an invalid query:
datefield:1972-05-20T17:33:18.772Z

These are valid queries:
datefield:1972-05-20T17\:33\:18.772Z
datefield:"1972-05-20T17:33:18.772Z2"
datefield:[1972-05-20T17:33:18.772 TO *

Date Range Formatting

Solr's Dat eRangeFi el d supports the same point in time date syntax described above (with date math describe
d below) and more to express date ranges. One class of examples is truncated dates, which represent the entire
date span to the precision indicated. The other class uses the range syntax ([TO]). Here are some

examples:
® 2000- 11 — The entire month of November, 2000.
® 2000- 11T13 - Likewise but for the 13th hour of the day (1pm-2pm).
® -0009 —The year 10 BC. A 0in the year position is 0 AD, and is also considered 1 BC.
® [2000-11-01 TO 2014- 12-01] — The specified date range at a day resolution.
® [2014 TO 2014-12-01] - From the start of 2014 till the end of the first day of December.
® [* TO 2014-12-01] - From the earliest representable time thru till the end of 2014-12-01.

Apache Solr Reference Guide 5.5 55

http://www.w3.org/TR/xmlschema-2/#dateTime

Limitations: The range syntax doesn't support embedded date math. If you specify a date instance supported by
TrieDateField with date math truncating it, like NOW DAY, you still get the first millisecond of that day, not the
entire day's range. Exclusive ranges (using { & }) work in queries but not for indexing ranges.

Date Math

Solr's date field types also supports date math expressions, which makes it easy to create times relative to fixed
moments in time, include the current time which can be represented using the special value of "NOW.

Date Math Syntax

Date math expressions consist either adding some quantity of time in a specified unit, or rounding the current
time by a specified unit. expressions can be chained and are evaluated left to right.

For example: this represents a point in time two months from now:

NOW2 MONTHS

This is one day ago:

NOW 1DAY

A slash is used to indicate rounding. This represents the beginning of the current hour:
NOW HOUR

The following example computes (with millisecond precision) the point in time six months and three days into the
future and then rounds that time to the beginning of that day:

NOW6 MONTHS+3DAYS/ DAY

Note that while date math is most commonly used relative to NOWit can be applied to any fixed moment in time
as well:

1972- 05- 20T17: 33: 18. 772Z+6MONTHS+3DAYS/ DAY
Request Parameters That Affect Date Math

NOW

The NOwparameter is used internally by Solr to ensure consistent date math expression parsing across multiple
nodes in a distributed request. But it can be specified to instruct Solr to use an arbitrary moment in time (past or
future) to override for all situations where the the special value of "NOW would impact date math expressions.

It must be specified as a (long valued) milliseconds since epoch
Example:

g=sol r&f g=start_date:[* TO NOW &NOW-1384387200000
TZ

By default, all date math expressions are evaluated relative to the UTC TimeZone, but the TZ parameter can be
specified to override this behaviour, by forcing all date based addition and rounding to be relative to the specified
time zone.

For example, the following request will use range faceting to facet over the current month, "per day" relative
UTC:

Apache Solr Reference Guide 5.5 56

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

http://1ocal host: 8983/ solr/my_col |l ection/sel ect?q=*: *&f acet.range=ny_date_fiel d&f ace
t =t rue&f acet . range. st art =NOW MONTH&f acet . r ange. end=NOW MONTHY2 BLMONTH&f acet . r ange. ga
p=%B1DAY

<int nanme="2013-11-01T00: 00: 00Z">0</i nt >
<int name="2013-11-02T00: 00: 00Z">0</i nt >
<int nane="2013-11-03T00: 00: 00Z">0</i nt >
<int nane="2013-11-04T00: 00: 00Z">0</i nt >
<int nanme="2013-11-05T00: 00: 00Z">0</i nt >
<int name="2013-11-06T00: 00: 00Z">0</i nt >
<int nane="2013-11-07T00: 00: 00Z">0</i nt >

While in this example, the "days" will be computed relative to the specified time zone - including any applicable
Daylight Savings Time adjustments:

http://1ocal host: 8983/ solr/my_col |l ection/sel ect ?2q=*: *&f acet.range=ny_date_fi el d&f ace
t =t rue&f acet . range. st art =NOW MONTH&f acet . r ange. end=NOW MONTHY2 BLMONTH&f acet . r ange. ga
p=%@2B1DAY&TZ=Aner i ca/ Los_Angel es

<int nanme="2013-11-01T07: 00: 00Z">0</int>
<int name="2013-11-02T07: 00: 00Z">0</i nt>
<int nane="2013-11-03T07: 00: 00Z">0</i nt >
<int nane="2013-11-04T08: 00: 00Z">0</i nt >
<int nanme="2013-11-05T08: 00: 00Z">0</i nt >
<int name="2013-11-06T08: 00: 00Z">0</i nt >
<int nane="2013-11-07T08: 00: 00Z">0</i nt >

More DateRangeField Details

Dat eRangeFi el d is almost a drop-in replacement for places where Tr i eDat eFi el d is used. The only
difference is that Solr's XML or SolrJ response formats will expose the stored data as a String instead of a Date.
The underlying index data for this field will be a bit larger. Queries that align to units of time a second on up
should be faster than TrieDateField, especially if it's in UTC. But the main point of DateRangeField as it's name
suggests is to allow indexing date ranges. To do that, simply supply strings in the format shown above. It also
supports specifying 3 different relational predicates between the indexed data, and the query range: | nt er sect
s (default), Cont ai ns, Wt hi n. You can specify the predicate by querying using the op local-params
parameter like so:

fg={!field f=dat eRange op=Contai ns}[2013 TO 2018]

In that example, it would find documents with indexed ranges that contain (or equals) the range 2013 thru 2018.
Multi-valued overlapping indexed ranges in a document are effectively coalesced.

For a DateRangeField example use-case and possibly other info, see Solr's community wiki.

Working with Enum Fields

Apache Solr Reference Guide 5.5 57

http://wiki.apache.org/solr/DateRangeField

The EnumField type allows defining a field whose values are a closed set, and the sort order is pre-determined
but is not alphabetic nor numeric. Examples of this are severity lists, or risk definitions.

Defining an EnumField in schenma. xm

The EnumField type definition is quite simple, as in this example defining field types for "priorityLevel" and
"riskLevel" enumerations:

<fiel dType nane="priorityLevel " class="solr.EnunField* enunsConfi g="enunsConfig. xm "
enumNane="priority"/>
<fiel dType nane="ri skLevel " cl ass="sol r. Enunti el d* enunsConfi g="enunsConfi g. xm "
enumNanme="ri sk" />

Besides the nane and the cl ass, which are common to all field types, this type also takes two additional
parameters:

® enunsConfi g: the name of a configuration file that contains the <enuni > list of field values and their
order that you wish to use with this field type. If a path to the file is not defined specified, the file should be
in the conf directory for the collection.

® enumNane: the name of the specific enumeration in the enunsConf i g file to use for this type.

Defining the EnumField configuration file

The file named with the enunsConf i g parameter can contain multiple enumeration value lists with different
names if there are multiple uses for enumerations in your Solr schema.

In this example, there are two value lists defined. Each list is between enumopening and closing tags:

<?xm version="1.0" ?>
<enunsConfi g>
<enum nanme="priority">
<val ue>Not Avai | abl e</val ue>
<val ue>Low</ val ue>
<val ue>Medi unx/ val ue>
<val ue>Hi gh</ val ue>
<val ue>Ur gent </ val ue>
</ enunp
<enum nane="ri sk">
<val ue>Unknown</ val ue>
<val ue>Very Low</val ue>
<val ue>Low</ val ue>
<val ue>Medi unx/ val ue>
<val ue>Hi gh</ val ue>
<val ue>Criti cal </ val ue>
</ enunp
</ enunsConfi g>

1. Changing Values
You cannot change the order, or remove, existing values in an <enum > without reindexing.

You can however add new values to the end.

Working with External Files and Processes

Apache Solr Reference Guide 5.5 58

® The ExternalFileField Type
® Format of the External File
® Reloading an External File
® The PreAnalyzedField Type
® JsonPreAnalyzedParser
® SimplePreAnalyzedParser

The External Fi | eFi el d Type

The Ext er nal Fi | eFi el d type makes it possible to specify the values for a field in a file outside the Solr index.
For such a field, the file contains mappings from a key field to the field value. Another way to think of this is that,
instead of specifying the field in documents as they are indexed, Solr finds values for this field in the external file.

1. External fields are not searchable. They can be used only for function queries or display. For more
information on function queries, see the section on Function Queries.

The Ext er nal Fi | eFi el d type is handy for cases where you want to update a particular field in many
documents more often than you want to update the rest of the documents. For example, suppose you have
implemented a document rank based on the number of views. You might want to update the rank of all the
documents daily or hourly, while the rest of the contents of the documents might be updated much less
frequently. Without Ext er nal Fi | eFi el d, you would need to update each document just to change the rank.
Using Ext er nal Fi | eFi el d is much more efficient because all document values for a particular field are stored
in an external file that can be updated as frequently as you wish.

In schera. xm , the definition of this field type might look like this:

<fiel dType nane="entryRankFil e" keyFi el d="pkld" defVal ="0" stored="fal se"
i ndexed="f al se" class="sol r.External Fil eFi el d" val Type="pfloat"/>

The keyFi el d attribute defines the key that will be defined in the external file. It is usually the unique key for the
index, but it doesn't need to be as long as the keyFi el d can be used to identify documents in the index. A def V
al defines a default value that will be used if there is no entry in the external file for a particular document.

The val Type attribute specifies the actual type of values that will be found in the file. The type specified must be
either a float field type, so valid values for this attribute are pf | oat, fl oat ortfl oat. This attribute can be
omitted.

Format of the External File

The file itself is located in Solr's index directory, which by default is $SOLR_HOVE/ dat a. The name of the file
should be ext ernal _fi el dnane or ext ernal _fi el dnane. *. For the example above, then, the file could
be named ext er nal _ent r yRankFi | e or ext er nal _ent ryRankFi | e. t xt .

(-:r) If any files using the name pattern . * (such as . t xt) appear, the last (after being sorted by name) will
be used and previous versions will be deleted. This behavior supports implementations on systems
where one may not be able to overwrite a file (for example, on Windows, if the file is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the right. Here are a
few example entries:

doc33=1. 414
doc34=3. 14159
doc40=42

Apache Solr Reference Guide 5.5 59

The keys listed in this file do not need to be unique. The file does not need to be sorted, but Solr will be able to
perform the lookup faster if it is.

Reloading an External File

It's possible to define an event listener to reload an external file when either a searcher is reloaded or when a
new searcher is started. See the section Query-Related Listeners for more information, but a sample definition in
sol rconfi g. xm might look like this:

<l i stener event="newSearcher"

cl ass="org. apache. sol r. schena. Ext ernal Fi | eFi el dRel oader "/ >
<listener event="firstSearcher"

cl ass="org. apache. sol r. schena. Ext ernal Fi | eFi el dRel oader"/>

The PreAnal yzedFi el d Type

The Pr eAnal yzedFi el d type provides a way to send to Solr serialized token streams, optionally with
independent stored values of a field, and have this information stored and indexed without any additional text
processing applied in Solr. This is useful if user wants to submit field content that was already processed by
some existing external text processing pipeline (e.g., it has been tokenized, annotated, stemmed, synonyms
inserted, etc.), while using all the rich attributes that Lucene's TokenStream provides (per-token attributes).

The serialization format is pluggable using implementations of PreAnalyzedParser interface. There are two
out-of-the-box implementations:

® JsonPreAnalyzedParser: as the name suggests, it parses content that uses JSON to represent field's
content. This is the default parser to use if the field type is not configured otherwise.

® SimplePreAnalyzedParser: uses a simple strict plain text format, which in some situations may be easier
to create than JSON.

There is only one configuration parameter, par ser | npl . The value of this parameter should be a fully qualified
class name of a class that implements PreAnalyzedParser interface. The default value of this parameter is or g.
apache. sol r. schema. JsonPr eAnal yzedPar ser.

By default, the query-time analyzer for fields of this type will be the same as the index-time analyzer, which
expects serialized pre-analyzed text. You must add a query type analyzer to your fieldType in order to perform
analysis on non-pre-analyzed queries. In the example below, the index-time analyzer expects the default JSON
serialization format, and the query-time analyzer will employ StandardTokenizer/LowerCaseFilter:

<fiel dType nane="pre_w th_query_anal yzer" class="solr.PreAnal yzedFi el d">
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

JsonPreAnalyzedParser

This is the default serialization format used by PreAnalyzedField type. It uses a top-level JSON map with the
following keys:

Key Description Required?
v Version key. Currently the supported version is 1. required
str Stored string value of a field. You can use at most one of str or bi n. optional

Apache Solr Reference Guide 5.5 60

https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-Query-RelatedListeners

bi n Stored binary value of a field. The binary value has to be Base64 encoded. optional
t okens serialized token stream. This is a JSON list. optional
Any other top-level key is silently ignored.

Token stream serialization

The token stream is expressed as a JSON list of JSON maps. The map for each token consists of the following
keys and values:

Key Description Lucene Attribute Value Required?
t token CharTermAttribute UTF-8 string representing the current token required
S start offset OffsetAttribute Non-negative integer optional
e end offset OffsetAttribute Non-negative integer optional
i position PositionincrementAttribute Non-negative integer - default is 1 optional
increment
p payload PayloadAttribute Base64 encoded payload optional
y lexical type TypeAttribute UTF-8 string optional
f flags FlagsAttribute String representing an integer value in optional

hexadecimal format

Any other key is silently ignored.

Example
{
VAR A
"str":"test 06",
"tokens": [
{"t":"one","s":123,"e":128,"i":22,"p": "DQAKDQRODg8=", "y": "word"},
{"t":"two","s":5,"e":8,"i":1,"y":"word"},
{"t":"three","s":20,"e":22,"i":1,"y":"foobar"}
]
}

SimplePreAnalyzedParser

The fully qualified class name to use when specifying this format via the par ser | npl configuration parameter is
or g. apache. sol r. schema. Si npl ePr eAnal yzedPar ser .

Syntax

The serialization format supported by this parser is as follows:

Apache Solr Reference Guide 5.5 61

http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/CharTermAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/OffsetAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PositionIncrementAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PayloadAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/TypeAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/FlagsAttribute.html

Serialization format

content ::= version (stored)? tokens
version ::=digit+ " "
stored field value - any "=" inside nust be escaped!
stored ::= "=" text "="
tokens ::= (token ((" ") + token)*)*
token ::=text ("," attrib)*
attrib ::= nane '='" val ue
name ::= text
val ue ::= text

Special characters in "text" values can be escaped using the escape character \ . The following escape
sequences are recognized:

Escape Description
Sequence
" literal space character
", literal , character
"\ =" literal = character
"\ literal \ character
"\ n" newline
“\r" carriage return
"\t horizontal tab

Please note that Unicode sequences (e.g. \ u0001) are not supported.

Supported attribute names

The following token attributes are supported, and identified with short symbolic names:

Name Description Lucene attribute Value format

i position increment PositionincrementAttribute integer

S start offset OffsetAttribute integer

e end offset OffsetAttribute integer

y lexical type TypeAttribute string

f flags FlagsAttribute hexadecimal integer

p payload PayloadAttribute bytes in hexadecimal format; whitespace is ignored

Token positions are tracked and implicitly added to the token stream - the start and end offsets consider only the
term text and whitespace, and exclude the space taken by token attributes.

Example token streams

Apache Solr Reference Guide 5.5 62

http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PositionIncrementAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/OffsetAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/TypeAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/FlagsAttribute.html
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/analysis/tokenattributes/PayloadAttribute.html

1 one two three

version: 1

stored: null

token: (term=one,startOffset=0,endOffset=3)
token: (term=t wo,startOffset=4,endOffset=7)
token: (term=t hr ee,startOffset=8,endOffset=13)

1 one two t hree

version: 1

stored: null

token: (term=one,startOffset=0,endOffset=3)
token: (term=t wo,startOffset=5,endOffset=8)
token: (term=t hr ee,startOffset=11,endOffset=16)

1 one, s=123,e=128,i =22 two three, s=20, e=22

version: 1

stored: null

token: (term=one,positionincrement=22,startOffset=123,endOffset=128)
token: (term=t wo,positionincrement=1,startOffset=5,endOffset=8)
token: (term=three,positionIncrement=1,startOffset=20,endOffset=22)

1\ one\ \,,i=22,a=\, two\=

\n,\ =\ \

® version: 1

® stored: null

® token: (term= one , ,positionincrement=22,startOffset=0,endOffset=6)
[]

token: (term=t wo=

,positionincrement=1,startOffset=7,endOffset=15)
® token: (term=\ ,positionincrement=1,startOffset=17,endOffset=18)

Note that unknown attributes and their values are ignored, so in this example, the "a" attribute on the
first token and the " " (escaped space) attribute on the second token are ignored, along with their
values, because they are not among the supported attribute names.

1 ,i=22 ,i=33,s=2,e=20 ,

version: 1

stored: null

token: (term=,positionincrement=22,startOffset=0,endOffset=0)
token: (term=,positionincrement=33,startOffset=2,endOffset=20)
token: (term=,positionincrement=1,startOffset=2,endOffset=2)

Apache Solr Reference Guide 5.5 63

1 =This is the stored part with \=
\n \'t escapes.=one two three

® version: 1
® stored:"This is the stored part with =

\'t escapes."
® token: (term=one,startOffset=0,endOffset=3)
® token: (term=t wo,startOffset=4,endOffset=7)
® token: (term=t hr ee,startOffset=8,endOffset=13)

Note that the "\ t " in the above stored value is not literal; it's shown that way to visually indicate the
actual tab char that is in the stored value.

1 ==

® version: 1
® stored: ™
® (no tokens)

1 =this is a test.=

® version: 1
® stored: "this is a test.”
® (no tokens)

Field Properties by Use Case

Here is a summary of common use cases, and the attributes the fields or field types should have to support the
case. An entry of true or false in the table indicates that the option must be set to the given value for the use
case to function correctly. If no entry is provided, the setting of that attribute has no impact on the case.

Use Case indexed stored multiValued omitNorms termVectors termPositions docValues

search within true
field

retrieve true
contents

use as true false
unique key

sorton field trye? false true 1 true’

use field false
boosts °

document false
boosts affect

searches

within field

highlighting trye 4 true true? true 3

Apache Solr Reference Guide 5.5 64

faceting ° true true

add multiple true
values,

maintaining

order

field length false
affects doc
score

MoreLikeThis true ©
5

Notes:

1 Recommended but not necessary.

2 Will be used if present, but not necessary.

3 (if termVectors=true)

4 A tokenizer must be defined for the field, but it doesn't need to be indexed.
5 Described in Understanding Analyzers, Tokenizers, and Filters.

6 Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term vectors are
recommended, but only required if st or ed=f al se.

7 Either i ndexed or docVal ues must be true, but both are not required. DocValues can be more efficient in
many cases.

Defining Fields

Fields are defined in the fields element of schema. xm . Once you have the field types set up, defining the fields
themselves is simple.

Example

The following example defines a field named pri ce with a type named f | oat and a default value of 0. 0; the i
ndexed and st or ed properties are explicitly set to t r ue, while any other properties specified on the f | oat fiel
d type are inherited.

<field nane="price" type="float" default="0.0" indexed="true" stored="true"/>

Field Properties

Property Description

name The name of the field. Field names should consist of alphanumeric or underscore characters only
and not start with a digit. This is not currently strictly enforced, but other field names will not have
first class support from all components and back compatibility is not guaranteed. Names with both
leading and trailing underscores (e.g. _ver si on_) are reserved. Every field must have a narne.

type The name of the fi el dType for this field. This will be found in the "nane" attribute on the fi el d
Type definition. Every field must have a t ype.

Apache Solr Reference Guide 5.5 65

default

field when it is indexed. If this property is not specified, there is no default.

Optional Field Type Override Properties

A default value that will be added automatically to any document that does not have a value in this

Fields can have many of the same properties as field types. Properties from the table below which are specified
on an individual field will override any explicit value for that property specified on the the <f i el dType/ > of the
field, or any implicit default property value provided by the underlying Fi el dType implementation. The table
below is reproduced from Field Type Definitions and Properties, which has more details:

Property

indexed

stored
docValues
sortMissingFirst
sortMissingLast

multiValued

omitNorms

omitTermFregAndPositions

omitPositions

termVectors
termPositions
termOffsets
termPayloads

required

Apache Solr Reference Guide 5.5

Description

If true, the value of the field can be used in queries to
retrieve matching documents

If true, the actual value of the field can be retrieved by
queries

If true, the value of the field will be put in a column-oriented
DocValues structure

Control the placement of documents when a sort field is not
present.

If true, indicates that a single document might contain
multiple values for this field type

If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for the
field, and saves some memory). Defaults to true for all
primitive (non-analyzed) field types, such as int, float,
data, bool, and string. Only full-text fields or fields that
need an index-time boost need norms.

If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces the
storage space required for the index. Queries that rely on
position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all
field types that are not text fields.

Similar to omi t Ter nFr eqAndPosi ti ons but preserves
term frequency information

These options instruct Solr to maintain full term vectors for
each document, optionally including position, offset and
payload information for each term occurrence in those
vectors. These can be used to accelerate highlighting and
other ancillary functionality, but impose a substantial cost in
terms of index size. They are not necessary for typical uses
of Solr.

Instructs Solr to reject any attempts to add a document
which does not have a value for this field. This property
defaults to false.

Values

true or

false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

Implicit
Default

true

true

false

false

false

false

false

66

useDocValuesAsStored If the field has docValues enabled, setting this to true would true or true
allow the field to be returned as if it were a stored field (even false
if it has st or ed=f al se) when matching "*" in an fl
parameter.

Related Topics

® SchemaXML-Fields
® Field Options by Use Case

Copying Fields

You might want to interpret some document fields in more than one way. Solr has a mechanism for making
copies of fields so that you can apply several distinct field types to a single piece of incoming information.

The name of the field you want to copy is the source, and the name of the copy is the destination. In schena. xm
|, it's very simple to make copies of fields:

<copyFi el d source="cat" dest="text" maxChars="30000" />

In this example, we want Solr to copy the cat field to a field named t ext . Fields are copied before analysis is
done, meaning you can have two fields with identical original content, but which use different analysis chains and
are stored in the index differently.

In the example above, if the t ext destination field has data of its own in the input documents, the contents of the
cat field will be added as additional values — just as if all of the values had originally been specified by the client.
Remember to configure your fields as nul ti val ued="t r ue" if they will ultimately get multiple values (either
from a multivalued source or from multiple copyFi el d directives).

A common usage for this functionality is to create a single "search" field that will serve as the default query field
when users or clients do not specify a field to query. For example, ti t| e, aut hor, keywor ds, and body may
all be fields that should be searched by default, with copy field rules for each field to copy to a cat chal | field
(for example, it could be named anything). Later you can set a rule in sol r confi g. xm to search the cat chal
| field by default. One caveat to this is your index will grow when using copy fields. However, whether this
becomes problematic for you and the final size will depend on the number of fields being copied, the number of
destination fields being copied to, the analysis in use, and the available disk space.

The maxChar s parameter, an i nt parameter, establishes an upper limit for the number of characters to be
copied from the source value when constructing the value added to the destination field. This limit is useful for
situations in which you want to copy some data from the source field, but also control the size of index files.

Both the source and the destination of copyFi el d can contain either leading or trailing asterisks, which will
match anything. For example, the following line will copy the contents of all incoming fields that match the
wildcard pattern * _t to the text field.:

<copyField source="*_t" dest="text" maxChars="25000" />

1. The copyFi el d command can use a wildcard (*) character in the dest parameter only if the sour ce p
arameter contains one as well. copyFi el d uses the matching glob from the source field for the dest fie
Id name into which the source content is copied.

Apache Solr Reference Guide 5.5 67

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
http://wiki.apache.org/solr/SchemaXml#Fields
http://wiki.apache.org/solr/FieldOptionsByUseCase

Dynamic Fields

Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is useful if you
discover you have forgotten to define one or more fields. Dynamic fields can make your application less brittle by
providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are indexing
documents, a field that does not match any explicitly defined fields can be matched with a dynamic field.

For example, suppose your schema includes a dynamic field with a name of * _i . If you attempt to index a
document with a cost _i field, but no explicit cost _i field is defined in the schema, then the cost i field will
have the field type and analysis defined for * _i .

Like regular fields, dynamic fields have a name, a field type, and options.

<dynami cField nane="*_i" type="int" indexed="true" stored="true"/>

It is recommended that you include basic dynamic field mappings (like that shown above) in your schenma. xnm .
The mappings can be very useful.

Related Topics

¢ SchemaXML-Dynamic Fields

Other Schema Elements

This section describes several other important elements of schema. xm .

Unique Key

The uni queKey element specifies which field is a unique identifier for documents. Although uni queKey is not
required, it is nearly always warranted by your application design. For example, uni queKey should be used if
you will ever update a document in the index.

You can define the unique key field by naming it:

<uni queKey>i d</ uni queKey>

Schema defaults and copyFi el ds cannot be used to populate the uni queKey field. You also can't use UUl DU
pdat ePr ocessor Fact or y to have uni queKey values generated automatically.

Further, the operation will fail if the uni queKey field is used, but is multivalued (or inherits the multivalueness
from the f i el dt ype). However, uni queKey will continue to work, as long as the field is properly used.

Default Search Field

If you are using the Lucene query parser, queries that don't specify a field name will use the defaultSearchField.
The DisMax and Extended DisMax query parsers will also fallback to this if gf is not specified.

(D Use of the def aul t Sear chFi el d element is deprecated in Solr versions 3.6 and higher. Instead, you
should use the df request parameter. At some point, the def aul t Sear chFi el d element may be
removed.

Apache Solr Reference Guide 5.5 68

http://wiki.apache.org/solr/SchemaXml#Dynamic_fields

For more information about query parsers, see the section on Query Syntax and Parsing.

Query Parser Default Operator

In queries with multiple terms, Solr can either return results where all conditions are met or where one or more
conditions are met. The operator controls this behavior. An operator of AND means that all conditions must be
fulfilled, while an operator of OR means that one or more conditions must be true.

In schema. xm , the sol r Quer yPar ser element controls what operator is used if an operator is not specified in
the query. The default operator setting only applies to the Lucene query parser, not the DisMax or Extended
DisMax query parsers, which internally hard-code their operators to OR.

@ The query parser default operator parameter has been deprecated in Solr versions 3.6 and higher. You
are instead encouraged to specify the query parser q. op parameter in your request handler.

Similarity
Similarity is a Lucene class used to score a document in searching.

A global <si m | ari t y> declaration can be used to specify a custom similarity implementation that you want
Solr to use when dealing with your index. A similarity can be specified either by referring directly to the name of a
class with a no-argument constructor, such as in this example showing Cl assi ¢Si mi | ari ty (which is also the
default if there is no <si mi | ari t y/ > specified in the schena. xm):

<simlarity class="solr.C assicSimlarity"/>
or by referencing a Si mi | ari t yFact or y implementation, which may take optional initialization parameters:

<simlarity class="solr.DFRSimlarityFactory">
<str name="basi cModel ">P</str>
<str name="afterEffect">L</str>
<str nanme="nornalization">H2</str>
<fl oat nanme="c">7</fl oat >
</[simlarity>

A special SchemaSi mi | ari t yFact ory is available, which allows individual field types to be configured with a
specific similarity to override the default behavior, and can likewise choose what that default behavior will be for
all other field types using the name of field type (specified by def aul t Si nFr onFi el dType) that is configured

with a specific similarity:

Apache Solr Reference Guide 5.5 69

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/search/similarities/SchemaSimilarityFactory.html

<simlarity class="solr.SchemaSi mlarityFactory">
<str name="def aul t Si nfronti el dType" >t ext _dfr</str>
<simlarity>
<fiel dType nane="text _dfr" class="solr. TextFiel d">
<anal yzer ... />
<simlarity class="solr.DFRSinmilarityFactory">
<str name="basi cModel ">| (F)</str>
<str name="afterEffect">B</str>
<str name="normalization">H3</str>
<fl oat nane="nu">900</fl oat >
</[simlarity>
</fieldType>
<fiel dType nane="text _ib">
<anal yzer ... />
<simlarity class="solr.IBSimlarityFactory">
<str nanme="distribution">SPL</str>
<str name="| anbda" >DF</str>
<str nanme="normali zation">H2</str>
</[simlarity>
</fieldType>
<fiel dType nane="text ot her">
<anal yzer ... />
</fieldType>

In the example above | BSi ni | ari t yFact ory (using the Information-Based model) will be used for any fields
of type t ext _i b, while DFRSI mi | ari t yFact ory (divergence from random) will be used for any fields of type t
ext _df r, as well as any fields using a type that does not explicitly specify a <si nmi l arity/>.

If SchenaSi nmi | arityFact ory is used with out a def aul t Si nFr onFi el dType specified, then Cl assi cSi m
i larity isimplicitly used as the default.

In addition to the various factories mentioned on this page, there are several other similarity implementations that
can be used such as the Sweet Spot Si i | ari t yFact ory, BM25Si mi | ari t yFact ory, etc.... For details, see

the Solr Javadocs for the similarity factories.

Related Topics

® SchemaXML-Miscellaneous Settings
® UniqueKey

Schema API

The Schema API provides read and write access to the Solr schema for each collection (or core, when using
standalone Solr). Read access to all schema elements is supported. Fields, dynamic fields, field types and
copyField rules may be added, removed or replaced. Future Solr releases will extend write access to allow more
schema elements to be modified.

I Re-index after schema modifications!
If you modify your schema, you will likely need to re-index all documents. If you do not, you may lose
access to documents, or not be able to interpret them properly, e.g. after replacing a field type.

Modifying your schema will never modify any documents that are already indexed. Again, you must
re-index documents in order to apply schema changes to them.

Apache Solr Reference Guide 5.5 70

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://wiki.apache.org/solr/SchemaXml#Miscellaneous_Settings
http://wiki.apache.org/solr/UniqueKey

To enable schema modification with this API, the schema will need to be managed and mutable. See the section
Managed Schema Definition in SolrConfig for more information.

The API allows two output modes for all calls: JSON or XML. When requesting the complete schema, there is
another output mode which is XML modeled after the schema.xml file itself.

When modifying the schema with the API, a core reload will automatically occur in order for the changes to be
available immediately for documents indexed thereafter. Previously indexed documents will not be automatically
handled - they must be re-indexed if they used schema elements that you changed.

The base address for the APl is htt p: // <host >: <port >/ sol r/ <col | ecti on_nane>. If for example you
run Solr's "cl oud" example (via the bi n/ sol r command shown below), which creates a "getti ngst art ed”
collection, then the base URL (as in all the sample URLSs in this section) would be: htt p: / /| ocal host : 8983/
solr/gettingstarted .

bin/solr -e cloud -nopronpt

® API Entry Points
®* Modify the Schema
¢ Add a New Field
Delete a Field
Replace a Field
Add a Dynamic Field Rule
Delete a Dynamic Field Rule
Replace a Dynamic Field Rule
Add a New Field Type
Delete a Field Type
Replace a Field Type
Add a New Copy Field Rule
Delete a Copy Field Rule
Multiple Commands in a Single POST
® Schema Changes among Replicas
® Retrieve Schema Information
® Retrieve the Entire Schema
List Fields
List Dynamic Fields
List Field Types
List Copy Fields
Show Schema Name
Show the Schema Version
List UniqueKey
Show Global Similarity
® Get the Default Query Operator
® Manage Resource Data

API| Entry Points

/ schena: retrieve the schema, or modify the schema to add, remove, or replace fields, dynamic fields, copy
fields, or field types

/ schenma/ fi el ds: retrieve information about all defined fields or a specific named field

/ schema/ dynami cfi el ds: retrieve information about all dynamic field rules or a specific named dynamic rule
/ schena/ fi el dt ypes: retrieve information about all field types or a specific field type

/ schema/ copyfi el ds: retrieve information about copy fields

/ schenma/ nane: retrieve the schema name

Apache Solr Reference Guide 5.5 71

/ schema/ ver si on: retrieve the schema version

/ schema/ uni quekey: retrieve the defined uniqgueKey

/ schema/ si mi | arity: retrieve the global similarity definition

/ schenma/ sol r quer ypar ser/ def aul t oper at or : retrieve the default operator

Modify the Schema

POST /col | ecti on/ schemn

To add, remove or replace fields, dynamic field rules, copy field rules, or new field types, you can send a POST
request to the / col | ecti on/ schenma/ endpoint with a sequence of commands to perform the requested
actions. The following commands are supported:

® add-fi el d: add a new field with parameters you provide.
* del ete-fiel d: delete afield.
®* repl ace-fi el d: replace an existing field with one that is differently configured.

® add-dynami c-fi el d: add a new dynamic field rule with parameters you provide.
® del et e-dynani c-fi el d: delete a dynamic field rule.
®* repl ace-dynam c-fi el d: replace an existing dynamic field rule with one that is differently configured.

® add-fiel d-type: add a new field type with parameters you provide.
* del ete-field-type: delete afield type.
®* repl ace-fiel d-type: replace an existing field type with one that is differently configured.

® add- copy-fi el d: add a new copy field rule.
® del et e-copy-fi el d: delete a copy field rule.

These commands can be issued in separate POST requests or in the same POST request. Commands are
executed in the order in which they are specified.

In each case, the response will include the status and the time to process the request, but will not include the
entire schema.

When modifying the schema with the API, a core reload will automatically occur in order for the
changes to be available immediately for documents indexed thereafter. Previously indexed documents

will not be automatically handled - they must be re-indexed if they used schema elements that you
changed.

Add a New Field

The add-fi el d command adds a new field definition to your schema. If a field with the same name exists an
error is thrown.

All of the properties available when defining a field with manual schena. xm edits can be passed via the API.
These request attributes are described in detail in the section Defining Fields.

For example, to define a new stored field named "sell-by", of type "tdate", you would POST the following request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field":({
"name":"sel |l -by",
"type":"tdate",
"stored":true }
}' http://local host:8983/sol r/gettingstarted/ schena

Apache Solr Reference Guide 5.5 72

Delete a Field

The del et e-fi el d command removes a field definition from your schema. If the field does not exist in the
schema, or if the field is the source or destination of a copy field rule, an error is thrown.

For example, to delete a field named "sell-by", you would POST the following request:

curl -X POST -H 'Content-type: application/json' --data-binary '{
"delete-field" : { "nane":"sell-by" }
}' http://1ocal host:8983/solr/gettingstarted/ schema

Replace a Field

The r epl ace- fi el d command replaces a field's definition. Note that you must supply the full definition for a
field - this command will not partially modify a field's definition. If the field does not exist in the schema an error
is thrown.

All of the properties available when defining a field with manual schena. xm edits can be passed via the API.
These request attributes are described in detail in the section Defining Fields.

For example, to replace the definition of an existing field "sell-by", to make it be of type "date" and to not be
stored, you would POST the following request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"replace-field":{
"name":"sell -by",
"type":"date",
"stored":fal se }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Add a Dynamic Field Rule

The add- dynani c-fi el d command adds a new dynamic field rule to your schema.

All of the properties available when editing schenma. xml can be passed with the POST request. The section Dyn
amic Fields has details on all of the attributes that can be defined for a dynamic field rule.

For example, to create a new dynamic field rule where all incoming fields ending with "_s" would be stored and
have field type "string", you can POST a request like this:

curl -X POST -H 'Content-type: application/json' --data-binary '{
"add-dynam c-field":{
"nanme":"*_s",
"type":"string",
"stored":true }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Delete a Dynamic Field Rule
The del et e- dynani c-fi el d command deletes a dynamic field rule from your schema. If the dynamic field

rule does not exist in the schema, or if the schema contains a copy field rule with a target or destination that
matches only this dynamic field rule, an error is thrown.

Apache Solr Reference Guide 5.5 73

For example, to delete a dynamic field rule matching "*_s", you can POST a request like this:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"del ete-dynamc-field":{ "name":"*_s" }
}'" http://local host:8983/solr/gettingstarted/ schema

Replace a Dynamic Field Rule

The r epl ace- dynami c-fi el d command replaces a dynamic field rule in your schema. Note that you must
supply the full definition for a dynamic field rule - this command will not partially modify a dynamic field rule's
definition. If the dynamic field rule does not exist in the schema an error is thrown.

All of the properties available when editing schenma. xml can be passed with the POST request. The section Dyn
amic Fields has details on all of the attributes that can be defined for a dynamic field rule.

For example, to replace the definition of the "*_s" dynamic field rule with one where the field type is
"text_general" and it's not stored, you can POST a request like this:

curl -X POST -H ' Content-type: application/json' --data-binary '{
"repl ace-dynam c-field":{
"nanme":"*_s",
"type":"text_general ",
"stored":fal se }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Add a New Field Type

The add-fi el d-t ype command adds a new field type to your schema.

All of the field type properties available when editing schema. xm by hand are available for use in a POST
request. The structure of the command is a json mapping of the standard field type definition, including the
name, class, index and query analyzer definitions, etc. Details of all of the available options are described in the
section Solr Field Types.

For example, to create a new field type named "myNewTxtField", you can POST a request as follows:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field-type" : {
"nanme": " nmyNewTxt Fi el d",
"class":"solr. TextField",
"posi tionlncrement Gap": " 100",
"anal yzer" : {
"charFilters":[{
"class":"solr.PatternRepl aceCharFil terFactory",
"repl acenent":"$1$1",
"pattern":"([a-zA-Z])\\\\1+" }],
"t okeni zer":{
"class":"sol r. Wit espaceTokeni zer Factory" 1},
"filters":[{
"class":"solr.WordDelimterFilterFactory",
"preserveOriginal":"0" }]}}
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Note in this example that we have only defined a single analyzer section that will apply to index analysis and

Apache Solr Reference Guide 5.5 74

query analysis. If we wanted to define separate analysis, we would replace the anal yzer section in the above
example with separate sections for i ndexAnal yzer and quer yAnal yzer . As in this example:

curl -X POST -H 'Content-type: application/json'" --data-binary '/{
"add-field-type":{
"nanme": " nyNewText Fi el d",
"class":"solr. TextField",
"i ndexAnal yzer": {

"tokeni zer":{
"class":"sol r. Pat hHi erarchyTokeni zer Fact ory"
"delimter":"/" }},

"queryAnal yzer": {

"tokeni zer":{

"class": "sol r. Keywor dTokeni zer Factory" }}}
}' http://1ocal host:8983/solr/gettingstarted/ schena

Delete a Field Type

The del et e-fi el d-t ype command removes a field type from your schema. If the field type does not exist in
the schema, or if any field or dynamic field rule in the schema uses the field type, an error is thrown.

For example, to delete the field type named "myNewTxtField", you can make a POST request as
follows:

curl -X POST -H ' Content-type: application/json' --data-binary '{
"delete-field-type":{ "name":"myNewTlxt Fi el d" }
}' http://1ocal host:8983/solr/gettingstarted/ schena

Replace a Field Type

The repl ace-fi el d-type command replaces a field type in your schema. Note that you must supply the full
definition for a field type - this command will not partially modify a field type's definition. If the field type does not
exist in the schema an error is thrown.

All of the field type properties available when editing schema. xm by hand are available for use in a POST
request. The structure of the command is a json mapping of the standard field type definition, including the
name, class, index and query analyzer definitions, etc. Details of all of the available options are described in the
section Solr Field Types.

For example, to replace the definition of a field type named "myNewTxtField", you can make a POST request as
follows:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"repl ace-field-type":({

"name": " myNewTxt Fi el d",

"class":"solr. TextField",

"posi tionlncrenment Gap": " 100",

"anal yzer":{

"t okeni zer":{
"class":"sol r. St andar dTokeni zer Factory" }}}

}' http://1ocal host:8983/sol r/gettingstarted/ schema

Apache Solr Reference Guide 5.5 75

Add a New Copy Field Rule

The add- copy-fi el d command adds a new copy field rule to your schema.

The attributes supported by the command are the same as when creating copy field rules by manually editing
the schema. xm , as below:

Name Required Description
source Yes The source field.
dest Yes A field or an array of fields to which the source field will be copied.
maxChars No The upper limit for the number of characters to be copied. The section Copying Fields

has more details.

For example, to define a rule to copy the field "shelf" to the "location" and "catchall” fields, you would POST the
following request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-copy-field":{
"source":"shel f",
"dest":["location", "catchall"]}
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Delete a Copy Field Rule

The del et e- copy-fi el d command deletes a copy field rule from your schema. If the copy field rule does not
exist in the schema an error is thrown.

The sour ce and dest attributes are required by this command.

For example, to delete a rule to copy the field "shelf" to the "location” field, you would POST the following
request:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"del ete-copy-field":{ "source":"shelf", "dest":"location" }
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Multiple Commands in a Single POST

It is possible to perform one or more add requests in a single command. The API is transactional and all
commands in a single call either succeed or fail together.

The commands are executed in the order in which they are specified. This means that if you want to create a
new field type and in the same request use the field type on a new field, the section of the request that creates
the field type must come before the section that creates the new field. Similarly, since a field must exist for it to
be used in a copy field rule, a request to add a field must come before a request for the field to be used as either
the source or the destination for a copy field rule.

The syntax for making multiple requests supports several approaches. First, the commands can simply be made
serially, as in this request to create a new field type and then a field that uses that type:

Apache Solr Reference Guide 5.5 76

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field-type":{
"name": " myNewTxt Fi el d",
"class":"solr. TextFiel d",
"posi tionlncrenment Gap": " 100",
"anal yzer": {
"charFilters":[{
"class":"solr. PatternRepl aceCharFilterFactory",
"repl acenment": " $1$1",
"pattern":"([a-zA-Z])\\\\1+" }],
"t okeni zer":{
"class": "sol r. Wi t espaceTokeni zer Fact ory" 1},
"filters":[{
"class":"solr.WordDelinmiterFilterFactory",
"preserveOriginal ":"0" }]}},
"add-field" : {
"nanme": "sel | - by",
"type": " myNewTlxt Fi el d",
"stored":true }
}' http://1ocal host:8983/solr/gettingstarted/ schena

Or, the same command can be repeated, as in this example:

curl -X POST -H ' Content-type: application/json'" --data-binary '/{
"add-field":({
"name": "shel f",
"type": " nmyNewTxt Fi el d",
"stored":true },
"add-field":{
"name":"| ocation",
"type": " nmyNewTxt Fi el d",
"stored":true },
"add- copy-field":{
"source":"shel f",
"dest":["location", "catchall"]}
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Finally, repeated commands can be sent as an array:

curl -X POST -H 'Content-type: application/json' --data-binary '/{
"add-field":[
{ "name":"shel f",
"type": " myNewTxt Fi el d",
"stored":true },
{ "name":"location",
"type": " myNewTxt Fi el d",
"stored":true }]
}' http://1ocal host:8983/sol r/gettingstarted/ schema

Schema Changes among Replicas

When running in SolrCloud mode, changes made to the schema on one node will propagate to all replicas in the
collection. You can pass the updateTimeoutSecs parameter with your request to set the number of seconds to
wait until all replicas confirm they applied the schema updates. This helps your client application be more robust

Apache Solr Reference Guide 5.5 77

in that you can be sure that all replicas have a given schema change within a defined amount of time. If
agreement is not reached by all replicas in the specified time, then the request fails and the error message will
include information about which replicas had trouble. In most cases, the only option is to re-try the change after
waiting a brief amount of time. If the problem persists, then you'll likely need to investigate the server logs on the
replicas that had trouble applying the changes. If you do not supply an updateTimeoutSecs parameter, the
default behavior is for the receiving node to return immediately after persisting the updates to ZooKeeper. All
other replicas will apply the updates asynchronously. Consequently, without supplying a timeout, your client
application cannot be sure that all replicas have applied the changes.

Retrieve Schema Information

The following endpoints allow you to read how your schema has been defined. You can GET the entire schema,
or only portions of it as needed.

To modify the schema, see the previous section Modify the Schema.

Retrieve the Entire Schema
GET /col |l ection/ schema
INPUT
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters should be added to the API request after '?".

Key Type Required Default Description

wit string No json Defines the format of the response. The options are json, xml or schem
a.xml. If not specified, JSON will be returned by default.

OUTPUT

Output Content

The output will include all fields, field types, dynamic rules and copy field rules, in the format requested (JSON or
XML). The schema name and version are also included.

EXAMPLES

Get the entire schema in JSON.

curl http://1ocal host: 8983/ solr/gettingstarted/ schema?w =j son

Apache Solr Reference Guide 5.5 78

{

"responseHeader": {
"status":0,

" Qri ne": 5},
"schema": {
"nanme": "exanpl e",

"version": 1.5,
"uni queKey":"id",
"fieldTypes":[{
"nanme": "al phaOnl ySort",
"class":"solr. TextFi el d",
"sortM ssingLast": true,
"om t Nornms":true,
"anal yzer": {
"t okeni zer":{
"class":"sol r. Keywor dTokeni zer Factory"},
"filters":[{
"class":"solr.Lower CaseFilterFactory"},
{
"class":"solr.TrinFilterFactory"},
{
"class":"solr. PatternRepl aceFi | terFactory",
"replace":"all",
"replacement":"",

"pattern":"([%a-z])"}]}},

"fields":[{
"nanme":" _version_",
"type":"long",
"i ndexed":true,
"stored":true},

"name": "aut hor",
"type":"text_general ",
"i ndexed": true,
"stored":true},

nane":"cat",
"type":"string",
"mul ti Val ued": true,
"indexed":true,
"stored":true},

"copyFields":[{
"source": "aut hor",
"dest":"text"},

{
"source":"cat",
"dest":"text"},

"source":"content",

"dest":"text"},

"source": "aut hor",
"dest":"author_s"}]}}

Apache Solr Reference Guide 5.5

79

Get the entire schema in XML

curl http://1ocal host:8983/solr/gettingstarted/ schema?wt =xn

<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli me" >5</int >
</[lst>
<l st name="schem">
<str name="nane">exanpl e</str>
<fl oat nane="version">1.5</fl oat >
<str nanme="uni queKey" >i d</str>
<arr name="fiel dTypes">
<l st>
<str name="nane">al phaOnl ySort</str>
<str nanme="cl ass">sol r. Text Fi el d</str>
<bool nanme="sortM ssi nglLast">true</bool >
<bool name="om t Nor ns" >t r ue</ bool >
<l st name="anal yzer">
<l st nanme="t okeni zer">
<str nanme="cl ass">sol r. Keywor dTokeni zer Fact ory</str>
</lst>
<arr name="filters">
<l st>
<str nanme="cl ass">sol r. Lower CaseFi | t er Fact ory</str>
</lst>
<l st >
<str name="class">solr.TrinFilterFactory</str>
</[lst>
<l st>
<str name="cl ass">solr. PatternRepl aceFilterFactory</str>
<str nanme="repl ace">al |l </str>
<str nanme="repl acenent"/>
<str name="pattern">(["a-z])</str>
</lst>
</arr>
</lst>
</lst>

<l st>
<str nanme="source" >aut hor</str>
<str nanme="dest">aut hor_s</str>
</|st>
</arr>
</[lst>
</ response>

Get the entire schema in "schema.xml" format.

curl http://local host:8983/solr/gettingstarted/ schema?w =schena. xni

Apache Solr Reference Guide 5.5

80

<schenma nane="exanpl e" version="1.5">
<uni queKey>i d</ uni queKey>
<types>

<fi el dType nane="al phaOnl ySort" class="solr. TextFi el d* sortM ssi ngLast="true"

om t Nor ms="true">
<anal yzer >

<t okeni zer cl ass="sol r. Keywor dTokeni zer Fact ory"/ >

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.TrinFilterFactory"/>

<filter class="solr.PatternRepl aceFilterFactory" replace="all"

repl acenent="" pattern="(["a-z])"/>
</ anal yzer>
</fieldType>

<copyFi el d source="url" dest="text"/>
<copyFi el d source="price" dest="price_c"/>
<copyFi el d source="aut hor" dest="aut hor_s"/>

</ schenma>

List Fields

GET /coll ection/schenma/fields

GET /col |l ection/schena/fields/fieldname

INPUT

Path Parameters
Key Description

collection = The collection (or core) name.

fieldname The specific fieldname (if limiting request to a single field).

Query Parameters

The query parameters can be added to the API request after a "?".

Key Type Required Default
wit string No json
fl string No (all
fields)
includeDynamic boolean No false

Apache Solr Reference Guide 5.5

Description

Defines the format of the response. The options are json or
xml. If not specified, JSON will be returned by default.

Comma- or space-separated list of one or more fields to
return. If not specified, all fields will be returned by default.

If true, and if the fl query parameter is specified or the field
name path parameter is used, matching dynamic fields are
included in the response and identified with the dynamicBa
se property. If neither the fl query parameter nor the fieldn
ame path parameter is specified, the includeDynamic quer
y parameter is ignored. If false, matching dynamic fields
will not be returned.

81

showDefaults boolean No false If true, all default field properties from each field's field type
will be included in the response (e.g. tokenized for solr.Te
xtField). If false, only explicitly specified field properties will

OUTPUT

Output Content

be included.

The output will include each field and any defined configuration for each field. The defined configuration can vary
for each field, but will minimally include the field nane, the t ype, ifitisi ndexed and ifitis st ored. If nul ti Va
| ued is defined as either true or false (most likely true), that will also be shown. See the section Defining Fields f

or more information about each parameter.

EXAMPLES

Get a list of all fields.

curl http://1ocal host:8983/solr/gettingstarted/ schema/fiel ds?wt =j son

The sample output below has been truncated to only show a few fields.

"fields":

{

[

"i ndexed": true,

"name": " _version_",
"stored": true,
"type": "long"

"i ndexed": true,

"nane": "author",
"stored": true,
"type": "text_general"

"i ndexed": true,
"mul ti Val ued": true,

}H
]

“name": "cat",
"stored": true,
"type": "string"

"responseHeader": {

"QTi me": 1,

"status": O

List Dynamic Fields

CET /col l ecti on/ schema/ dynani cfi el ds

CET /col |l ection/ schema/ dynani cfi el ds/ nane

Apache Solr Reference Guide 5.5

82

INPUT

Path Parameters

Key Description

collection = The collection (or core) name.

name The name of the dynamic field rule (if limiting request to a single dynamic field rule).

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json, xml
. If not specified, JSON will be returned by default.

showDefaults boolean No false If true, all default field properties from each dynamic field's
field type will be included in the response (e.g. tokenized for
solr.TextField). If false, only explicitly specified field
properties will be included.

OUTPUT

Output Content
The output will include each dynamic field rule and the defined configuration for each rule. The defined

configuration can vary for each rule, but will minimally include the dynamic field nane, the t ype, ifitis i ndexed

and if it is st or ed. See the section Dynamic Fields for more information about each parameter.

EXAMPLES

Get a list of all dynamic field declarations:
curl http://1ocal host: 8983/ solr/gettingstarted/ schema/dynam cfi el ds?wt =j son

The sample output below has been truncated.

Apache Solr Reference Guide 5.5

83

"dynam cFi el ds": [

{
"i ndexed": true,
"name": "*_coordi nate",
"stored": false,
"type": "tdoubl e"
IE
{
“mul tiVal ued": true,
"nanme": "ignored_*",
"type": "ignored"
ir
{
"nanme": "random *",
"type": "randonf
[r
{
"i ndexed": true,
"mul ti Val ued": true,
"name": "attr_*",
"stored": true,
"type": "text_general"
iE
{
"indexed": true,
"mul ti Val ued": true,
"name": "* _txt",
"stored": true,
"type": "text_general"
}
e
"responseHeader": {
"Qrime": 1,
"status": O
}

List Field Types

CET /col l ection/schema/fiel dtypes

GET /col |l ection/schema/fi el dtypes/ nane
INPUT
Path Parameters

Key Description
collection = The collection (or core) name.

name The name of the field type (if limiting request to a single field type).

Query Parameters

Apache Solr Reference Guide 5.5

The query parameters can be added to the API request after a "?".

Key Type Required Default Description

wit string No json Defines the format of the response. The options are json or x
ml. If not specified, JSON will be returned by default.

showDefaults boolean No false If true, all default field properties from each field type will be
included in the response (e.g. tokenized for solr.TextField).

If false, only explicitly specified field properties will be
included.

OUTPUT

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can
vary for each type, but will minimally include the field type name and the cl ass. If query or index analyzers,
tokenizers, or filters are defined, those will also be shown with other defined parameters. See the section Solr
Field Types for more information about how to configure various types of fields.

EXAMPLES

Get a list of all field types.

curl http://1ocal host: 8983/ solr/gettingstarted/ schenma/fiel dtypes?w =j son

The sample output below has been truncated to show a few different field types from different parts of the list.

Apache Solr Reference Guide 5.5

85

"fieldTypes": [
{
"anal yzer": {
"class": "solr. Tokeni zer Chai n",
"filters": [
{
"class": "solr.LowerCaseFilterFactory"
Yo
{
"class": "solr.TrinFilterFactory"
bo
{

"class": "solr.PatternRepl aceFilterFactory",
"pattern": "(["a-z])",
"replace": "all",
"repl acenent":
}
Il
"t okeni zer": {
"class": "solr.KeywordTokeni zer Fact ory"
}
'

"class": "solr.TextField",
"dynam cFields": [],
"fields": [1],

"nanme": "al phaOnlySort",
"om t Norns": true,

"sortM ssinglLast": true

"class": "solr.TrieFloatField",
"dynami cFiel ds": [
"x fs",
e g
Il
"fields": [
"price",
"wei ght"
Il
"name": "float",
"posi tionlncrement Gap": "0",
"precisionStep": "0"

}

List Copy Fields

GET /col |l ection/ schenma/ copyfi el ds

INPUT

Path Parameters

Apache Solr Reference Guide 5.5

Key Description
collection = The collection (or core) name.
Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If
not specified, JSON will be returned by default.

source.fl string No (all Comma- or space-separated list of one or more copyField source
source fields to include in the response - copyField directives with all other
fields) source fields will be excluded from the response. If not specified, all
copyField-s will be included in the response.

dest.fl string No (all dest Comma- or space-separated list of one or more copyField dest fields
fields) to include in the response - copyField directives with all other dest

fields will be excluded. If not specified, all copyField-s will be included
in the response.

OUTPUT

Output Content

The output will include the sour ce and dest ination of each copy field rule defined in schera. xni . For more
information about copying fields, see the section Copying Fields.

EXAMPLES

Get a list of all copyfields.

curl http://1local host: 8983/ solr/gettingstarted/ schema/ copyfiel ds?w =j son

The sample output below has been truncated to the first few copy definitions.

Apache Solr Reference Guide 5.5 87

"copyFields": [

{
"dest": "text",
"source": "author"
B
{
"dest": "text",
"source": "cat"
B
{
"dest": "text",
"source": "content"
B
{
"dest": "text",
"source": "content _type"
B

]

"responseHeader": {
"Qrinme": 3,
"status": O

Show Schema Name
GET /col | ecti on/ schenma/ nane
INPUT
Path Parameters
Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wit string No json Defines the format of the response. The options are json or xml. If not
specified, JSON will be returned by default.

OUTPUT

Output Content
The output will be simply the name given to the schema.

EXAMPLES

Get the schema name.

Apache Solr Reference Guide 5.5

88

curl http://1local host: 8983/ solr/gettingstarted/ schema/ nane?w =j son
{
"responseHeader": {
"status":0,
"Qrine": 1},

"nane": "exanpl e"}

Show the Schema Version

GET /col | ection/ schenm/ version

INPUT
Path Parameters
Key Description
collection The collection (or core) hame.
Query Parameters
The query parameters can be added to the API request after a "?".
Description

Key Type Required Default

json Defines the format of the response. The options are json or xml. If not

wit string No
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will simply be the schema version in use.

EXAMPLES

Get the schema version

http://1 ocal host: 8983/ solr/gettingstarted/ schena/ versi on?wt =j son

curl
{
"responseHeader": {
"status": 0,
"Qri me": 2},

"version": 1.5}

List UniqueKey

GET /col | ecti on/ schema/ uni quekey

Apache Solr Reference Guide 5.5

INPUT
Path Parameters
Key Description
collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

Defines the format of the response. The options are json or xml. If not

wit string No json
specified, JSON will be returned by default.

OUTPUT

Output Content
The output will include simply the field name that is defined as the uniqueKey for the index.

EXAMPLES
List the uniqueKey.

http://1 ocal host: 8983/ sol r/ gettingstarted/ schenma/ uni quekey?w =j son

curl
{
"responseHeader": {
"status":O0,
"Qrinme": 2},

"uni queKey": "id"}

Show Global Similarity

CET /collection/schema/simlarity

INPUT
Path Parameters
Key Description

collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description
Defines the format of the response. The options are json or xml. If not

wt string No json
specified, JSON will be returned by default.

Apache Solr Reference Guide 5.5

90

OUTPUT

Output Content
The output will include the class name of the global similarity defined (if any).

EXAMPLES
Get the similarity implementation.

http://1 ocal host: 8983/ solr/gettingstarted/ schena/simlarity?wt=json

curl
{
"responseHeader": {
"status":0,
"Qrine": 1},

"simlarity":{
"class":"org. apache. solr.search.sinmlarities.DefaultSimlarityFactory"}}

Get the Default Query Operator

CET /col l ection/ schema/ sol rquer ypar ser/ def aul t oper at or

INPUT
Path Parameters
Key Description
collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".

Key Type Required Default Description

Defines the format of the response. The options are json or xml. If not

wit string No json
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will include simply the default operator if none is defined by the user.
EXAMPLES

Get the default operator.

curl
http://1 ocal host:8983/solr/gettingstarted/ schema/sol rqueryparser/defaul toperator ?wt =

j son

Apache Solr Reference Guide 5.5 91

{

"responseHeader": {
"status":0,

"Qri ne": 2},
"defaul t Operator":"OR"}

Manage Resource Data

The Managed Resources REST API provides a mechanism for any Solr plugin to expose resources that should
support CRUD (Create, Read, Update, Delete) operations. Depending on what Field Types and Analyzers are
configured in your Schema, additional / scherma/ REST API paths may exist. See the Managed Resources secti

on for more information and examples.

Putting the Pieces Together

At the highest level, schenma. xm is structured as follows. This example is not real XML, but it gives you an idea
of the structure of the file.

<schenma>
<types>
<fiel ds>
<uni queKey>
<copyFi el d>
</ schema>

Obviously, most of the excitementisint ypes and f i el ds, where the field types and the actual field definitions
live. These are supplemented by copyFi el ds. The uni queKey must always be defined. In older Solr versions
you would find def aul t Sear chFi el d and sol r Quer yPar ser tags as well, but although these still work they
are deprecated and discouraged, see Other Schema Elements.

G) Types and fields are optional tags
Note that the t ypes and f i el ds sections are optional, meaning you are free to mix f i el d, dynami cF

i el d, copyFi el dandfi el dType definitions on the top level. This allows for a more logical grouping
of related tags in your schema.

Choosing Appropriate Numeric Types
For general numeric needs, use Tri el nt Fi el d, Tri eLongFi el d, Tri eFl oat Fi el d, and Tri eDoubl eFi el
d with pr eci si onSt ep="0".

If you expect users to make frequent range queries on humeric types, use the default pr eci si onSt ep (by not
specifying it) or specify it as pr eci si onSt ep="8" (which is the default). This offers faster speed for range
gueries at the expense of increasing index size.

Working With Text

Apache Solr Reference Guide 5.5 92

Handling text properly will make your users happy by providing them with the best possible results for text
searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not sophisticated about
their searches and the most common search is likely to be a simple keyword search. You can use copyFi el d to
take a variety of fields and funnel them all into a single text field for keyword searches. In the schema.xml file for
the "t echpr oduct s" example included with Solr, copyFi el d declarations are used to dump the contents of ca
t, nane, manu, f eat ur es, and i ncl udes into a single field, t ext . In addition, it could be a good idea to copy

| Dinto t ext in case users wanted to search for a particular product by passing its product number to a keyword
search.

Another technique is using copyFi el d to use the same field in different ways. Suppose you have a field that is
a list of authors, like this:

Schildt, Herbert; Wl pert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out punctuation:
schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:
schildt herbert wolpert |lewis davies p

Finally, for faceting, use the primary author only via a St ri ngFi el d:

Schil dt, Herbert

Related Topics

® SchemaXML

DocValues

DocValues are a way of recording field values internally that is more efficient for some purposes, such as sorting
and faceting, than traditional indexing.

Why DocValues?

The standard way that Solr builds the index is with an inverted index. This style builds a list of terms found in all
the documents in the index and next to each term is a list of documents that the term appears in (as well as how
many times the term appears in that document). This makes search very fast - since users search by terms,
having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this
approach is not very efficient. The faceting engine, for example, must look up each term that appears in each
document that will make up the result set and pull the document IDs in order to build the facet list. In Solr, this is
maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a
document-to-value mapping built at index time. This approach promises to relieve some of the memory
requirements of the fieldCache and make lookups for faceting, sorting, and grouping much faster.

Enabling DocValues

To use docValues, you only need to enable it for a field that you will use it with. As with all schema design, you
need to define a field type and then define fields of that type with docValues enabled. All of these actions are

Apache Solr Reference Guide 5.5 93

http://wiki.apache.org/solr/SchemaXml

done in schema. xni .

Enabling a field for docValues only requires adding docVal ues="t r ue" to the field (or field type) definition, as
in this example from the schena. xml of Solr's sanpl e_t echpr oduct s_confi gs config set:

<field nanme="nanu_exact" type="string" indexed="fal se" stored="fal se"
docVal ues="true" />

1. If you have already indexed data into your Solr index, you will need to completely re-index your content
after changing your field definitions in schema. xmi in order to successfully use docValues.

DocValues are only available for specific field types. The types chosen determine the underlying Lucene
docValue type that will be used. The available Solr field types are:

® StrFieldand UU DFi el d.
® |f the field is single-valued (i.e., multi-valued is false), Lucene will use the SORTED type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.

® Any Tri e* numeric fields and Enunti el d.
® |f the field is single-valued (i.e., multi-valued is false), Lucene will use the NUMERIC type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.

These Lucene types are related to how the values are sorted and stored.

There are two implications of multi-valued DocValues being stored as SORTED_SET types that should be kept
in mind when combined with /export (and, by extension Streaming Aggregation-based funcitonality):

1. Values are returned in sorted order rather than the original input order.
2. If multiple, identical entries are in the field in a single document, only one will be returned for that
document.

There is an additional configuration option available, which is to modify the docVal uesFor nat used by the field
type. The default implementation employs a mixture of loading some things into memory and keeping some on
disk. In some cases, however, you may choose to specify an alternative DocValuesFormat implementation. For
example, you could choose to keep everything in memory by specifying docVal uesFor mat =" Menor y" on a
field type:

<fi el dType nane="string_in_nemdv" class="solr.StrField" docVal ues="true"
docVal uesFor mat =" Menory" />

Please note that the docVal uesFor mat option may change in future releases.

(D Lucene index back-compatibility is only supported for the default codec. If you choose to customize the d
ocVal uesFor mat in your schema.xml, upgrading to a future version of Solr may require you to either
switch back to the default codec and optimize your index to rewrite it into the default codec before
upgrading, or re-build your entire index from scratch after upgrading.

Using DocValues

Sorting & Functions

If docVal ues="true" for afield, then DocValues will automatically be used any time the field is used for sortin
g or in Function Queries.

Apache Solr Reference Guide 5.5 94

https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-docValuesFormat
https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-docValuesFormat
http://lucene.apache.org/core/5_5_0/core/org/apache/lucene/codecs/DocValuesFormat.html
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter

Retrieving DocValues During Search

Field values retrieved during search queries are typically returned from stored values. However, non-stored
docValues fields will be also returned along with other stored fields when all fields (or pattern matching globs) are
specified to be returned (e.g. "f | =*") for search queries depending on the effective value of the useDocVal ues
As St or ed parameter for each field. For schema versions >= 1.6, the implicit default is useDocVal uesAs St or
ed="true". See Field Type Definitions and Properties & Defining Fields for more details.

When useDocVal uesAsSt or ed="f al se", non-stored DocValues fields can still be explicitly requested by
name in the fl param, but will not match glob patterns (" *").

Note that returning DocValues fields at query time has performance implications that stored fields may not
because DocValues are column-oriented and may therefore incur additional cost to retrieve for each returned
document. Also note that while returning non-stored fields from DocValues, the values of a multi-valued field are
returned in sorted order (and not insertion order). If you require the multi-valued fields to be returned in the
original insertion order, then make your multi-valued field as stored (such a change requires re-indexing).

Schemaless Mode

Schemaless Mode is a set of Solr features that, when used together, allow users to rapidly construct an effective
schema by simply indexing sample data, without having to manually edit the schema. These Solr features, all
specified in sol rconfi g. xm , are:

1. Managed schema: Schema modifications are made through Solr APIs rather than manual edits - see Man
aged Schema Definition in SolrConfig.

2. Field value class guessing: Previously unseen fields are run through a cascading set of value-based
parsers, which guess the Java class of field values - parsers for Boolean, Integer, Long, Float, Double,
and Date are currently available.

3. Automatic schema field addition, based on field value class(es): Previously unseen fields are added to the
schema, based on field value Java classes, which are mapped to schema field types - see Solr Field
Types.

Using the Schemaless Example

The three features of schemaless mode are pre-configured in the dat a_dr i ven_schena_confi gs config set i
n the Solr distribution. To start an example instance of Solr using these configs, run the following command:

bin/solr start -e schenml ess

This will launch a Solr server, and automatically create a collection (named "get t i ngst ar t ed") that contains
only three fields in the initial schema: i d, _versi on_,and _text .

You can use the / schena/ fi el ds Schema API to confirm this: cur| http://I ocal host: 8983/ sol r/ get
tingstarted/ schenma/fiel ds will output:

Apache Solr Reference Guide 5.5 95

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter

{

"responseHeader": {
"status":0,
"Qrine": 1},

"fields":[{
"name":"_text_",
"type":"text_general ",
"mul tiVal ued":true,

"i ndexed":true,
"stored":fal se},

{
"nanme":" _version_ ",
"type":"long",
"i ndexed":true,
"stored":true},

{

"name":"id",
"type":"string",

"mul ti Val ued": f al se,
"indexed":true,
"required":true,
"stored":true,

"uni queKey":true}]}

1. Because the dat a_dri ven_schema_confi gs config set includes a copyFi el d directive that causes
all content to be indexed in a predefined "catch-all" _t ext _field, to enable single-field search that
includes all fields' content, the index will be larger than it would be without the copyFi el d. When you
nail down your schema, consider removing the _t ext _ field and the corresponding copyFi el d directiv
e if you don't need it.

Configuring Schemaless Mode

As described above, there are three configuration elements that need to be in place to use Solr in schemaless
mode. In the dat a_dri ven_schema_conf i gs config set included with Solr these are already configured. If,
however, you would like to implement schemaless on your own, you should make the following changes.

Enable Managed Schema

As described in the section Managed Schema Definition in SolrConfig, changing the schenmaFact or y will allow
the schema to be modified by the Schema API. Your sol r confi g. xm should have a section like the one
below (and the ClassicindexSchemaFactory should be commented out or removed).

<schemaFact ory cl ass="Managedl ndexSchemaFact ory" >
<bool nane="nut abl e">true</ bool >
<str name="nmanagedSchemaResour ceNane" >managed- schema</ str>
</ schenmaFact or y>

Define an UpdateRequestProcessorChain

The UpdateRequestProcessorChain allows Solr to guess field types, and you can define the default field type
classes to use. To start, you should define it as follows (see the javadoc links below for update processor factory

Apache Solr Reference Guide 5.5 96

documentation):

Apache Solr Reference Guide 5.5

97

<updat eRequest Pr ocessor Chai n nane="add- unknown-fi el ds-to-the-schem" >
<!'-- UU DUpdat eProcessor Factory will generate an id if none is present in the
i ncom ng docunent -->
<processor class="sol r.UU DUpdat eProcessor Factory" />
<processor class="solr.LogUpdat eProcessorFactory"/>
<processor class="solr.DistributedUpdat eProcessorFactory"/>
<processor class="solr.RenmoveBl ankFi el dUpdat ePr ocessor Factory"/>
<processor class="solr.Fi el dNameMut at i ngUpdat ePr ocessor Fact ory" >
<str name="pattern">[Mw\.]</str>
<str name="repl acenent">_</str>
</ processor >
<processor class="solr.ParseBool eanFi el dUpdat ePr ocessor Fact ory"/ >
<processor class="solr. ParselLongFi el dUpdat eProcessor Factory"/>
<processor class="sol r. ParseDoubl eFi el dUpdat eProcessor Factory"/>
<processor class="solr. ParseDat eFi el dUpdat ePr ocessor Fact ory" >
<arr name="format">
<str>yyyy- Mt dd' T' HH: nm ss. SSSZ</ st r >
<str>yyyy- Mt dd' T' HH: mm ss, SSSZ</ st r >
<str>yyyy- MMt dd' T' HH: nm ss. SSS</ str>
<str>yyyy-Mvidd' T' HH. nm ss, SSS</ str>
<str>yyyy- Mt dd' T' HH: nm ssZ</str >
<str>yyyy- Mt dd' T' HH: nm ss</str>
<str>yyyy- MM dd' T' HH: nmiz</ str >
<str>yyyy- Mt dd' T' HH: </ str >
<str>yyyy- MMt dd HH: mm ss. SSSZ</ str >
<str>yyyy- MMt dd HH: mm ss, SSSZ</ st r >
<str>yyyy- Mt dd HH: mm ss. SSS</ st r >
<str>yyyy- Mt dd HH nm ss, SSS</str>
<str>yyyy- Mt dd HH mm ssZ</str>
<str>yyyy- Mt dd HH nm ss</str>
<str>yyyy- Mt dd HH m¥</str>
<str>yyyy- Mt dd HH mmx/str>
<str>yyyy- Mt dd</str>
</arr>
</ processor >
<processor class="solr.AddSchenmaFi el dsUpdat ePr ocessor Fact ory" >
<str nanme="defaul tFi el dType">strings</str>
<l st name="typeMappi ng" >
<str nanme="val ued ass">j ava. | ang. Bool ean</str>
<str nanme="fiel dType">bool eans</str>
</[lst>
<l st name="typeMappi ng" >
<str nanme="val ueC ass">j ava. util.Date</str>
<str name="fiel dType">t dates</str>
</[lst>
<l st name="typeMappi ng" >
<str nanme="val ueCd ass">j ava. | ang. Long</ str>
<str nane="val ueC ass">j ava. |l ang. | nteger</str>
<str name="fiel dType">tl ongs</str>
</[lst>
<l st name="typeMappi ng" >
<str nane="val ueC ass">j ava. | ang. Nunber </ str>
<str name="fiel dType" >t doubl es</str>
</[lst>
</ processor >
<processor class="solr.RunUpdat eProcessor Factory"/>
</ updat eRequest Pr ocessor Chai n>

Apache Solr Reference Guide 5.5

Javadocs for update processor factories mentioned above:

UUIDUpdateProcessorFactory
RemoveBlankFieldUpdateProcessorFactory
FieldNameMutatingUpdateProcessorFactory
ParseBooleanFieldUpdateProcessorFactory
ParseLongFieldUpdateProcessorFactory
ParseDoubleFieldUpdateProcessorFactory
ParseDateFieldUpdateProcessorFactory
AddSchemaFieldsUpdateProcessorFactory

Make the UpdateRequestProcessorChain the Default for the UpdateRequestHandler

Once the UpdateRequestProcessorChain has been defined, you must instruct your UpdateRequestHandlers to
use it when working with index updates (i.e., adding, removing, replacing documents). Here is an example using
InitParams to set the defaults on all / updat e request handlers:

<i ni t Paranms pat h="/update/**">
<l st nanme="defaul ts">
<str nanme="updat e. chai n">add- unknown-fi el ds-to-t he-schenma</str>
</l|st>
</i ni t Par ans>

1. After each of these changes have been made, Solr should be restarted (or, you can reload the cores to
load the new sol rconfi g. xm definitions).

Examples of Indexed Documents

Once the schemaless mode has been enabled (whether you configured it manually or are using dat a_dri ven_
schema_confi gs), documents that include fields that are not defined in your schema should be added to the
index, and the new fields added to the schema.

For example, adding a CSV document will cause its fields that are not in the schema to be added, with
fieldTypes based on values:

curl "http://local host: 8983/ solr/gettingstarted/ update?conmit=true" -H
"Content-type: application/csv" -d

id, Artist, Al bum Rel eased, Rati ng, FronDi st ri butor, Sol d

44C, A d Shews, Mead for Wal ki ng, 1988-08-13, 0. 01, 14, 0

Output indicating success:

<r esponse>
<l st name="r esponseHeader"><i nt nane="st atus">0</i nt ><i nt

name="Qri me" >106</i nt ></| st >

</ response>

The fields now in the schema (output from cur|l http://| ocal host: 8983/ sol r/ gettingstarted/sche
ma/fields):

Apache Solr Reference Guide 5.5 99

http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/UUIDUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/RemoveBlankFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/FieldNameMutatingUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseBooleanFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseLongFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseDoubleFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/ParseDateFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/5_5_0/solr-core/org/apache/solr/update/processor/AddSchemaFieldsUpdateProcessorFactory.html

{

"responseHeader": {

"status":0,
"Qrime": 1},
"fields":[{
"nanme": " Al bunt,
"type":"strings"}, /'l Field value guessed as String -> strings fieldType
{
"name":"Artist",
"type":"strings"}, /'l Field value guessed as String -> strings fieldType
{
"name": " FronDi stri butor”,
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fieldType
{
"nanme":"Rating",
"type":"tdoubl es"}, /1l Field val ue guessed as Double -> tdoubles fieldType
{
"nanme": " Rel eased",
"type":"tdates"}, /1 Field value guessed as Date -> tdates fiel dType
{
"nanme": " Sol d",
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fiel dType
{
"name":" _text_ ",
Bo
{
"nanme":" _version_ ",
Bo
{
"name":"id",
1}

(¥) You Can Still Be Explicit
Even if you want to use schemaless mode for most fields, you can still use the Schema API to
pre-emptively create some fields, with explicit types, before you index documents that use them.

Internally, the Schema REST API and the Schemaless Update Processors both use the same Managed
Schema functionality.

Once a field has been added to the schema, its field type is fixed. As a consequence, adding documents with
field value(s) that conflict with the previously guessed field type will fail. For example, after adding the above

document, the "Sol d" field has the fieldType t | ongs, but the document below has a non-integral decimal
value in this field:

curl "http://local host:8983/solr/gettingstarted/ update?conm t=true" -H
"Content-type: application/csv" -d '

i d, Descri ption, Sol d

19F, Cassettes by the pound, 4. 93"

This document will fail, as shown in this output:

Apache Solr Reference Guide 5.5 100

<response>
<l st nanme="responseHeader" >
<i nt name="stat us">400</i nt >
<int name="Qri ne">7</int >
</lst>
<l st name="error">
<str name="nmsg">ERROR [doc=19F] Error adding field 'Sold = 4.93" nsg=For input
string: "4.93"</str>
<i nt name="code">400</i nt >
</lst>
</ response>

Apache Solr Reference Guide 5.5 101

Understanding Analyzers, Tokenizers, and Filters

The following sections describe how Solr breaks down and works with textual data. There are three main
concepts to understand: analyzers, tokenizers, and filters.

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An analyzer
examines the text of fields and generates a token stream. Analyzers may be a single class or they may be
composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or tokens.

Filters examine a stream of tokens and keep them, transform or discard them, or create new ones. Tokenizers
and filters may be combined to form pipelines, or chains, where the output of one is input to the next. Such a
sequence of tokenizers and filters is called an analyzer and the resulting output of an analyzer is used to match
query results or build indices.

Using Analyzers, Tokenizers, and Filters

Although the analysis process is used for both indexing and querying, the same analysis process need not be
used for both operations. For indexing, you often want to simplify, or normalize, words. For example, setting all
letters to lowercase, eliminating punctuation and accents, mapping words to their stems, and so on. Doing so
can increase recall because, for example, "ram", "Ram" and "RAM" would all match a query for "ram". To
increase query-time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap
acronyms if you're interested in male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or terms, of that field and are used either to build an
index of those terms when a new document is added, or to identify which documents contain the terms you are
querying for.

For More Information

These sections will show you how to configure field analyzers and also serves as a reference for the details of
configuring each of the available tokenizer and filter classes. It also serves as a guide so that you can configure
your own analysis classes if you have special needs that cannot be met with the included filters or tokenizers.

For Analyzers, see:

® Analyzers: Detailed conceptual information about Solr analyzers.
® Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

For Tokenizers, see:

® About Tokenizers: Detailed conceptual information about Solr tokenizers.
® Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes included in
this distribution of Solr.

For Filters, see:

® About Filters: Detailed conceptual information about Solr filters.

® Filter Descriptions: Information about configuring filters, and about the filter factory classes included in this
distribution of Solr.

® CharFilterFactories: Information about filters for pre-processing input characters.

To find out how to use Tokenizers and Filters with various languages, see:

® |anguage Analysis: Information about tokenizers and filters for character set conversion or for use with
specific languages.

Apache Solr Reference Guide 5.5 102

Analyzers

An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a child of the <
fi el dType> element in the schena. xm configuration file (in the same conf/ directory as sol rconfi g. xnl)

In normal usage, only fields of type sol r. Text Fi el d will specify an analyzer. The simplest way to configure an
analyzer is with a single <anal yzer > element whose class attribute is a fully qualified Java class hame. The
named class must derive from or g. apache. | ucene. anal ysi s. Anal yzer . For example:

<fi el dType nane="nanetext" class="solr.TextField">
<anal yzer cl ass="org. apache. | ucene. anal ysi s. core. Wi t espaceAnal yzer"/ >
</fieldType>

In this case a single class, Whi t espaceAnal yzer , is responsible for analyzing the content of the named text
field and emitting the corresponding tokens. For simple cases, such as plain English prose, a single analyzer
class like this may be sufficient. But it's often necessary to do more complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete, relatively
simple processing steps. As you will soon discover, the Solr distribution comes with a large selection of
tokenizers and filters that covers most scenarios you are likely to encounter. Setting up an analyzer chain is very
straightforward; you specify a simple <anal yzer > element (no class attribute) with child elements that name
factory classes for the tokenizer and filters to use, in the order you want them to run.

For example:

<fi el dType nane="nanetext" class="solr. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

Note that classes in the or g. apache. sol r. anal ysi s package may be referred to here with the shorthand so
I r. prefix.

In this case, no Analyzer class was specified on the <anal yzer > element. Rather, a sequence of more
specialized classes are wired together and collectively act as the Analyzer for the field. The text of the field is
passed to the first item in the list (sol r. St andar dTokeni zer Fact or y), and the tokens that emerge from the
last one (sol r. Engl i shPorterFil t er Fact ory) are the terms that are used for indexing or querying any
fields that use the "nametext" fi el dType.

1. Field Values versus Indexed Terms
The output of an Analyzer affects the terms indexed in a given field (and the terms used when parsing
gueries against those fields) but it has no impact on the stored value for the fields. For example: an
analyzer might split "Brown Cow" into two indexed terms "brown" and "cow", but the stored value will still
be a single String: "Brown Cow"

Apache Solr Reference Guide 5.5 103

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream that results
from analysis is added to an index and defines the set of terms (including positions, sizes, and so on) for the
field. At query time, the values being searched for are analyzed and the terms that result are matched against
those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you want to query
for exact string matches, possibly with case-insensitivity, for example. In other cases, you may want to apply
slightly different analysis steps during indexing than those used at query time.

If you provide a simple <anal yzer > definition for a field type, as in the examples above, then it will be used for
both indexing and queries. If you want distinct analyzers for each phase, you may include two <anal yzer > defi
nitions distinguished with a type attribute. For example:

<fiel dType nane="nanetext" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>
<filter class="solr.SynonynFilterFactory" synonyns="syns.txt"/>
</ anal yzer>
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer>
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase, any that are not
listed in keepwor ds. t xt are discarded and those that remain are mapped to alternate values as defined by the
synonym rules in the file syns. t xt . This essentially builds an index from a restricted set of possible values and
then normalizes them to values that may not even occur in the original text.

At query time, the only normalization that happens is to convert the query terms to lowercase. The filtering and
mapping steps that occur at index time are not applied to the query terms. Queries must then, in this example, be
very precise, using only the normalized terms that were stored at index time.

About Tokenizers

The job of a tokenizer is to break up a stream of text into tokens, where each token is (usually) a sub-sequence
of the characters in the text. An analyzer is aware of the field it is configured for, but a tokenizer is not.
Tokenizers read from a character stream (a Reader) and produce a sequence of Token objects (a
TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They may also be
added to or replaced, such as mapping aliases or abbreviations to normalized forms. A token contains various
metadata in addition to its text value, such as the location at which the token occurs in the field. Because a
tokenizer may produce tokens that diverge from the input text, you should not assume that the text of the token is
the same text that occurs in the field, or that its length is the same as the original text. It's also possible for more
than one token to have the same position or refer to the same offset in the original text. Keep this in mind if you
use token metadata for things like highlighting search results in the field text.

Apache Solr Reference Guide 5.5 104

<fiel dType nane="text" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer>
</fieldType>

The class named in the tokenizer element is not the actual tokenizer, but rather a class that implements the Tok
eni zer Fact ory API. This factory class will be called upon to create new tokenizer instances as needed.
Objects created by the factory must derive from Tokeni zer, which indicates that they produce sequences of
tokens. If the tokenizer produces tokens that are usable as is, it may be the only component of the analyzer.
Otherwise, the tokenizer's output tokens will serve as input to the first filter stage in the pipeline.

A TypeTokenFi | t er Fact ory is available that creates a TypeTokenFi | t er that filters tokens based on their
TypeAttribute, which is setin f act ory. get St opTypes.

For a complete list of the available TokenFilters, see the section Tokenizers.

When To use a CharFilter vs. a TokenFilter

There are several pairs of CharFilters and TokenFilters that have related (ie: Mappi ngChar Fi | t er and ASCI | F
ol di ngFi | t er) or nearly identical (ie: Patt er nRepl aceCharFi | t er Fact ory and Patt er nRepl aceFil te
r Fact or y) functionality and it may not always be obvious which is the best choice.

The decision about which to use depends largely on which Tokenizer you are using, and whether you need to
preprocess the stream of characters.

For example, suppose you have a tokenizer such as St andar dTokeni zer and although you are pretty happy
with how it works overall, you want to customize how some specific characters behave. You could modify the
rules and re-build your own tokenizer with JFlex, but it might be easier to simply map some of the characters
before tokenization with a Char Fi | t er.

About Filters

Like tokenizers, filters consume input and produce a stream of tokens. Filters also derive from or g. apache. | u
cene. anal ysi s. TokenSt r eam Unlike tokenizers, a filter's input is another TokenStream. The job of a filter is
usually easier than that of a tokenizer since in most cases a filter looks at each token in the stream sequentially

and decides whether to pass it along, replace it or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once, although this is
less common. One hypothetical use for such a filter might be to normalize state names that would be tokenized
as two words. For example, the single token "california" would be replaced with "CA", while the token pair
"rhode" followed by "island" would become the single token "RI".

Because filters consume one TokenSt r eamand produce a new TokenSt r eam they can be chained one after
another indefinitely. Each filter in the chain in turn processes the tokens produced by its predecessor. The order
in which you specify the filters is therefore significant. Typically, the most general filtering is done first, and later
filtering stages are more specialized.

Apache Solr Reference Guide 5.5 105

<fiel dType nane="text" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those tokens then
pass through Solr's standard filter, which removes dots from acronyms, and performs a few other common
operations. All the tokens are then set to lowercase, which will facilitate case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A stemmer is
basically a set of mapping rules that maps the various forms of a word back to the base, or stem, word from
which they derive. For example, in English the words "hugs", "hugging" and "hugged" are all forms of the stem
word "hug". The stemmer will replace all of these terms with "hug", which is what will be indexed. This means
that a query for "hug" will match the term "hugged", but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms, like "hugging",
to match documents with different variations of the same stem word, such as "hugged". This works because both
the indexer and the query will map to the same stem ("hug").

Word stemming is, obviously, very language specific. Solr includes several language-specific stemmers created
by the Snowball generator that are based on the Porter stemming algorithm. The generic Snowball Porter
Stemmer Filter can be used to configure any of these language stemmers. Solr also includes a convenience
wrapper for the English Snowball stemmer. There are also several purpose-built stemmers for non-English
languages. These stemmers are described in Language Analysis.

Tokenizers

You configure the tokenizer for a text field type in schema. xm with a <t okeni zer > element, as a child of <an
al yzer>:

<fiel dType nane="text" class="solr.TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed. Tokenizer factory
classes implement the or g. apache. sol r. anal ysi s. Tokeni zer Fact or y. A TokenizerFactory's cr eat e()
method accepts a Reader and returns a TokenStream. When Solr creates the tokenizer it passes a Reader
object that provides the content of the text field.

Apache Solr Reference Guide 5.5 106

http://snowball.tartarus.org/

Tokenizers discussed in this section:
Standard Tokenizer

Classic Tokenizer

Keyword Tokenizer

Letter Tokenizer

Lower Case Tokenizer
N-Gram Tokenizer

Edge N-Gram Tokenizer

ICU Tokenizer

Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer
Related Topics

Arguments may be passed to tokenizer factories by setting attributes on the <t okeni zer > element.

<fiel dType nane="senicol onDel im ted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer class="solr. PatternTokeni zer Factory" pattern="; "/>
</ anal yzer >
</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token, including Internet domain
names.

® The "@" character is among the set of token-splitting punctuation, so email addresses are not preserved
as single tokens.

Note that words are split at hyphens.

The Standard Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following token
types: <ALPHANUM>, <NUM>, <SOQUTHEAST_ASI AN>, <| DEOGRAPHI C>, and <HI RAGANA>.

Factory class: sol r. St andar dTokeni zer Fact ory
Arguments:

maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
maxTokenLengt h.

Example:

<anal yzer>
<t okeni zer cl ass="sol r. StandardTokeni zer Factory"/ >
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe", "foo.com", "by", "03", "09", "re", "m37", "xq"

Apache Solr Reference Guide 5.5 107

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://unicode.org/reports/tr29/#Word_Boundaries

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1 and
previous. It does not use the Unicode standard annex UAX#29 word boundary rules that the Standard Tokenizer
uses. This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case t